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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape
The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s

Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:
[GSM]  Getting Started with Stata for Mac

[GSU]  Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[D] Stata Data Management Reference Manual
G] Stata Graphics Reference Manual

XT] Stata Longitudinal-Data/Panel-Data Reference Manual

ME] Stata Multilevel Mixed-Effects Reference Manual

Mi] Stata Multiple-Imputation Reference Manual

MV]  Stata Multivariate Statistics Reference Manual

PSS]  Stata Power and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
[Ts] Stata Time-Series Reference Manual

[TE] Stata Treatment-Effects Reference Manual:
Potential Outcomes/Countertactual Outcomes

[1] Stata Glossary and Index

[M] Mata Reterence Manual
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me — Introduction to multilevel mixed-effects models

Syntax by example Formal syntax Description Remarks and examples
Acknowledgments References Also see

Syntax by example

Linear mixed-effects models

Linear model of y on x with random intercepts by id
mixed y x || id:
Three-level linear model of y on x with random intercepts by doctor and patient
mixed y x || doctor: || patient:
Linear model of y on x with random intercepts and coefficients on x by id
mixed y x || id: x
Same model with covariance between the random slope and intercept
mixed y x || id: x, covariance(unstructured)
Linear model of y on x with crossed random effects for id and week
mixed y x || _all: R.id || _all: R.week
Same model specified to be more computationally efficient
mixed y x || _all: R.id || week:
Full factorial repeated-measures ANOVA of y on a and b with random effects by field

mixed y a##b || field:

Generalized linear mixed-effects models

Logistic model of y on x with random intercepts by id, reporting odds ratios
melogit y x || id: , or

Same model specified as a GLM
meglm y x || id:, family(bernoulli) link(logit)

Three-level ordered probit model of y on x with random intercepts by doctor and
patient

meoprobit y x || doctor: || patient:
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Formal syntax
Linear mixed-effects models

mixed depvar fe_equation [II re_equation} [II re_equation ] [, options]

where the syntax of the fixed-effects equation, fe_equation, is
[indepvars] [l_'f] [m] [weight] [ , fe_options]

and the syntax of a random-effects equation, re_equation, is the same as below for a generalized
linear mixed-effects model.

Generalized linear mixed-effects models

mecmd depvar fe_equation [II re_equation} [II re_equation ] [, options]

where the syntax of the fixed-effects equation, fe_equation, is
[indepvars] [lf] [in] [, fe_options]
and the syntax of a random-effects equation, re_equation, is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ s re_options}
for random effects among the values of a factor variable

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

Description

Mixed-effects models are characterized as containing both fixed effects and random effects. The
fixed effects are analogous to standard regression coefficients and are estimated directly. The random
effects are not directly estimated (although they may be obtained postestimation) but are summarized
according to their estimated variances and covariances. Random effects may take the form of either
random intercepts or random coefficients, and the grouping structure of the data may consist of
multiple levels of nested groups. As such, mixed-effects models are also known in the literature as
multilevel models and hierarchical models. Mixed-effects commands fit mixed-effects models for a
variety of distributions of the response conditional on normally distributed random effects.
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Mixed-effects linear regression
mixed Multilevel mixed-effects linear regression

Mixed-effects generalized linear model
meglm Multilevel mixed-effects generalized linear model

Mixed-effects binary regression

melogit Multilevel mixed-effects logistic regression

meqrlogit Multilevel mixed-effects logistic regression (QR decomposition)
meprobit Multilevel mixed-effects probit regression

mecloglog Multilevel mixed-effects complementary log-log regression

Mixed-effects ordinal regression

meologit Multilevel mixed-effects ordered logistic regression
meoprobit Multilevel mixed-effects ordered probit regression

Mixed-effects count-data regression

mepoisson Multilevel mixed-effects Poisson regression
meqrpoisson Multilevel mixed-effects Poisson regression (QR decomposition)
menbreg Multilevel mixed-effects negative binomial regression

Mixed-effects multinomial regression

Although there is no memlogit command, multilevel mixed-effects multinomial
logistic models can be fit using gsem; see [SEM]| example 41g.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Using mixed-effects commands
Mixed-effects models
Linear mixed-effects models
Generalized linear mixed-effects models
Alternative mixed-effects model specification
Likelihood calculation
Computation time and the Laplacian approximation
Diagnosing convergence problems
Distribution theory for likelihood-ratio test
Examples
Two-level models
Covariance structures
Three-level models
Crossed-effects models
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Introduction

Multilevel models have been used extensively in diverse fields, from the health and social sciences
to econometrics. Mixed-effects models for binary outcomes have been used, for example, to analyze
the effectiveness of toenail infection treatments (Lesaffre and Spiessens 2001) and to model union
membership of young males (Vella and Verbeek 1998). Ordered outcomes have been studied by, for
example, Tutz and Hennevogl (1996), who analyzed data on wine bitterness, and De Boeck and
Wilson (2004), who studied verbal aggressiveness. For applications of mixed-effects models for count
responses, see, for example, the study on police stops in New York City (Gelman and Hill 2007)
and the analysis of the number of patents (Hall, Griliches, and Hausman 1986). Rabe-Hesketh and
Skrondal (2012) provide more examples of linear and generalized linear mixed-effects models.

For a comprehensive treatment of mixed-effects models, see, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012).

Using mixed-effects commands

Below we summarize general capabilities of the mixed-effects commands. We let mecmd stand
for any mixed-effects command, such as mixed, melogit, or meprobit.

1. Fit a two-level random-intercept model with levelvar defining the second level:
. mecmd depvar [indepvars} ... | levelvar:, ...

2. Fit a two-level random-coefficients model containing the random-effects covariates revars at the
level levelvar:

. mecmd depvar [indepvars} ... |l levelvar: revars, ...

This model assumes an independent covariance structure between the random effects; that is, all
covariances are assumed to be 0. There is no statistical justification, however, for imposing any
particular covariance structure between random effects at the onset of the analysis. In practice,
models with an unstructured random-effects covariance matrix, which allows for distinct variances
and covariances between all random-effects covariates (revars) at the same level, must be explored
first; see Other covariance structures and example 3 in [ME] meqrlogit for details.

Stata’s commands use the default independent covariance structure for computational feasibility.
Numerical methods for fitting mixed-effects models are computationally intensive—computation
time increases significantly as the number of parameters increases; see Computation time and the
Laplacian approximation for details. The unstructured covariance is the most general and contains
many parameters, which may result in an unreasonable computation time even for relatively simple
random-effects models. Whenever feasible, however, you should start your statistical analysis
by fitting mixed-effects models with an unstructured covariance between random effects, as we
show next.

3. Specify the unstructured covariance between the random effects in the above:
. mecmd depvar [indepvars} ... | levelvar: revars, covariance(unstructured) ...

4. Fit a three-level nested model with levelvarl defining the third level and levelvar2 defining the
second level:

. mecmd depvar [indepvars} .o |l levelvarl: || levelvar2:, ...
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10.

11.

12.

13.

. Fit the above three-level nested model as a two-level model with exchangeable covariance structure

at the second level (mixed, meqrlogit, and meqrpoisson only):
. mecmd depvar [indepvars} ... |l levelvarl: R.levelvar2, cov(exchangeable) ...

See example 11 in [ME] mixed for details about this equivalent specification. This specification
may be useful for a more efficient fitting of random-effects models with a mixture of crossed
and nested effects.

. Fit higher-level nested models:

. mecmd depvar [indepvars} co. |1 levelvarl: || levelvar2: || levelvar3: || ...

. Fit a two-way crossed-effects model with the _all: notation for each random-effects equation:

. mecmd depvar [[ndepvars} ... |l _all: R.factorl || _all: R.factor2 ...

When you use the —all: notation for each random-effects equation, the total dimension of the
random-effects design equals r; + 73, where 71 and 7o are the numbers of levels in factorl and
factor2, respectively. This specification may be infeasible for some mixed-effects models; see
item 8 below for a more efficient specification of this model.

. Fit a two-way crossed-effects model with the _all: notation for the first random-effects equation

only:
. mecmd depvar [indepvam‘} ... |l _all: R.factorl || factor2:, ...

Compared with the specification in item 7, this specification requires only 7 + 1 parameters and
is thus more efficient; see Crossed-effects models for details.

. Fit a two-way full-factorial random-effects model:

. mecmd depvar [indepvars} ... |l _all: R.factorl || factor2: || factorl: ...
Fit a two-level mixed-effects model with a blocked-diagonal covariance structure between revars/
and revars2:

. mecmd depvar [indepvars} ... |l levelvar: revarsl, noconstant ///
|| levelvar: revars2, noconstant ...

Fit a linear mixed-effects model where the correlation between the residual errors follows an
autoregressive process of order 1:

. mixed depvar [indepvars} ... |l levelvar:, residuals(ar 1, t(time)) ...

More residual error structures are available; see [ME] mixed for details.
Fit a two-level linear mixed-effects model accounting for sampling weights exprl at the first
(residual) level and for sampling weights expr2 at the level of levelvar:

. mixed depvar [indepvars} [pweight=expri]l ... || levelvar:, pweight(expr2) ...

Mixed-effects commands—with the exception of mixed, meqrlogit, and meqrpoisson—allow
constraints on both fixed-effects and random-effects parameters. We provide several examples
below of imposing constraints on variance components.

Fit a mixed-effects model with the variance of the random intercept on levelvar constrained to
be 16:

. constraint 1 _b[var(_consl[levelvar]):_cons]=16

. mecmd depvar [indepvars} ... |l levelvar:, constraints(1) ...
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14. Fit a mixed-effects model with the variance of the random intercept on levelvar and the variance
of the random slope on revar to be equal:

. constraint 1 _b[var (revarllevelvar]):_cons] = _b[var(_consl[levelvar]):_cons]
. mecmd depvar [indepvam‘} ... | levelvar: revar, constraints(1) ...

Note that the constraints above are equivalent to imposing an identity covariance structure for
the random-effects equation:

. mecmd depvar [indepvars} ... || levelvar: revar, cov(identity) ...
15. Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to have a banded structure:
.mat p = (1,.,.,. \ 2,1,.,. \ 3,2,1,. \ 4,3,2,1)
. mecmd depvar [ina’epvars} ... |l levelvar: revars, noconstant ///

covariance(pattern(p)) ...

16. Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to the specified numbers, and with all the covariances constrained
to be O:

. mat f = diag((1,2,3,4))
. mecmd depvar [indepwu‘s} ... | levelvar: revars, noconstant ///

covariance(fixed(f)) ...

The variance components in models in items 15 and 16 can also be constrained by using the
constraints() option, but using covariance(pattern()) or covariance(fixed()) is more
convenient.

Mixed-effects models

Linear mixed-effects models

Mixed-effects models for continuous responses, or linear mixed-effects (LME) models, are a
generalization of linear regression allowing for the inclusion of random deviations (effects) other than
those associated with the overall error term. In matrix notation,

y=XB+Zu+e (1)

where y is the n X 1 vector of responses, X is an n X p design/covariate matrix for the fixed effects
3, and Z is the n x ¢ design/covariate matrix for the random effects u. The n X 1 vector of errors
€ is assumed to be multivariate normal with mean 0 and variance matrix o2R.

The fixed portion of (1), X/3, is analogous to the linear predictor from a standard OLS regression
model with 3 being the regression coefficients to be estimated. For the random portion of (1), Zu-+e,
we assume that u has variance—covariance matrix G and that u is orthogonal to € so that

e =[5 oA

The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the overall residual variance o2 and the residual-variance parameters that are contained within R..



me — Introduction to multilevel mixed-effects models 7

The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random slope
on age (for example), or both. The general specification of G also provides additional flexibility: the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for residual
errors to be heteroskedastic and correlated and allows flexibility in exactly how these characteristics
can be modeled.

In clustered-data situations, it is convenient not to consider all n observations at once but instead
to organize the mixed model as a series of M independent groups (or clusters)

yj = X;B8+Zju; + ¢ (2)

for j = 1,..., M, with cluster j consisting of n; observations. The response y; comprises the rows
of y corresponding with the jth cluster, with X; and €; defined analogously. The random effects u;
can now be thought of as M realizations of a ¢ X 1 vector that is normally distributed with mean O
and ¢ X ¢ variance matrix X. The matrix Z; is the n; x ¢ design matrix for the jth cluster random
effects. Relating this to (1),

Z1 0 0 u
0 Z, --- O 1

= . . . s ou=| s G=Iu®YE R=Iy®A (3)
0 0 0 Zy Unm

where A denotes the variance matrix of the level-1 residuals and ® is the Kronecker product.

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
simply specify a random effect at the school level, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to
allow random effects at both the school and the class-within-school levels.

In Stata, you can use mixed to fit linear mixed-effects models; see [ME] mixed for a detailed
discussion and examples. Various predictions, statistics, and diagnostic measures are available after
fitting an LME model with mixed. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] mixed postestimation for a detailed discussion and examples.

Generalized linear mixed-effects models

Generalized linear mixed-effects (GLME) models, also known as generalized linear mixed models
(GLMMs), are extensions of generalized linear models allowing for the inclusion of random deviations
(effects). In matrix notation,

g{E(y|X,u)} = X8+ Zu, y~F (4)

where y is the n X 1 vector of responses from the distributional family F', X is an n X p design/covariate
matrix for the fixed effects 3, and Z is an n X ¢ design/covariate matrix for the random effects u.
The X3 + Zu part is called the linear predictor and is often denoted as 1. g(-) is called the link
function and is assumed to be invertible such that

E(ylu) =g ' (XB+Zu)=H(n) = p
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For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for ¢g(-) and F results in a wide array of models. For instance,
if g(-) is the logit function and y is distributed as Bernoulli, we have

logit{E(y)} =XB+ Zu, y ~ Bernoulli

or mixed-effects logistic regression. If g(+) is the natural log function and y is distributed as Poisson,
we have

In{E(y)} = XB+ Zu, y ~ Poisson
or mixed-effects Poisson regression.

In Stata, you can use meglm to fit mixed-effects models for nonlinear responses. Some combinations
of families and links are so common that we implemented them as separate commands in terms of
meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family (nbinomial) link(log)

When no family-link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, accepts
frequency and sampling weights and allows for modeling of the structure of the residual errors; see
[ME] mixed for details.

Various predictions, statistics, and diagnostic measures are available after fitting a GLME model
with meglm and other me commands. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] meglm postestimation for a detailed discussion and examples.

For the random portion of (4), Zu, we assume that u has variance—covariance matrix G such that
Var(u) = G

The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components.

Analogously to (2), in clustered-data situations, we can write

E(yjlu;) =g '(X;B+Zju;), y;~F (5)
with all the elements defined as before. In terms of the whole dataset, we now have
Z, 0 0 u
0 Z, --- 0 1
Z=|. . . .| u=]:i]; G=Iyex (6)

0 0 0 Zy UM
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Finally, we state our convention on counting and ordering model levels. Models (2) and (5) are
what we call two-level models, with extensions to three, four, or any number of levels. The observation
yi; is for individual ¢ within cluster j, and the individuals comprise the first level while the clusters
comprise the second level of the model. In our hypothetical three-level model with classes nested
within schools, the observations within classes (the students, presumably) would constitute the first
level, the classes would constitute the second level, and the schools would constitute the third level.
This differs from certain citations in the classical ANOVA literature and texts such as Pinheiro and
Bates (2000) but is the standard in the vast literature on hierarchical models, for example, Skrondal
and Rabe-Hesketh (2004).

Alternative mixed-effects model specification

In this section, we present a hierarchical or multistage formulation of mixed-effects models where
each level is described by its own set of equations.

Consider a random-intercept model that we write here in general terms:

Yij = Bo + P1xij + uj + €5 (7)

This single-equation specification contains both level-1 and level-2 effects. In the hierarchical form,
we specify a separate equation for each level.

Yij = Y0j + Prwij + €
Y05 = Boo + uoj

(8)

The equation for the intercept 7yo; consists of the overall mean intercept oo and a cluster-specific
random intercept ug;. To fit this model in Stata, we must translate the multiple-equation notation into
a single-equation form. We substitute the second equation into the first one and rearrange terms.

Yij = Boo + ug;j + 6133”' + €4

9)
= Boo + P1i; + uoj + €5

Note that model (9) is the same as model (7) with Sy = By and up; = u;. Thus the Stata syntax
for our generic random-intercept model is

. mixed y x || id:
where id is the variable designating the clusters.

We can extend model (8) to include a random slope. We do so by specifying an additional equation
for the slope on x;;.

Yij = 7oj T 11535 1 €ij
Yoj = Boo + uo; (10)
7 = Bro + uij

The additional equation for the slope y1; consists of the overall mean slope 319 and a cluster-specific

random slope u1;. We substitute the last two equations into the first one to obtain a reduced-form
model.
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Yi; = (Boo + uos) + (Bio + u1j)xij + €

= Boo + BroTi; + uoj + U5 + €5

The Stata syntax for this model becomes

. mixed y x || id: x, covariance(unstructured)

where we specified an unstructured covariance structure for the level-2 u terms.

Here we further extend the random-slope random-intercept model (10) by adding a level-2 covariate
z; into the level-2 equations.

Yij = Yoj T Y1jTij + €ij
Y05 = Boo + Bo1zj + uo;
715 = Bro + P11z + uiy

We substitute as before to obtain a single-equation form:

Yij = (Boo + Bo1z; + woj) + (Bro + Pr1zj + uij)Tij + €
= Boo + Bo1z; + BroTij + B112iTij + Uoj + U1 Tij + €45

Now the fixed-effects portion of the equation contains a constant and variables x, z, and their
interaction. Assuming both = and z are continuous variables, we can use the following Stata syntax
to fit this model:

. mixed y x z c.x#c.z || id: x, covariance(unstructured)

We refer you to Raudenbush and Bryk (2002) and Rabe-Hesketh and Skrondal (2012) for a
more thorough discussion and further examples of multistage mixed-model formulations, including
three-level models.

Likelihood calculation

The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in LME models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the ANOVA method to unbalanced data for
general ANOVA designs is attributed to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38-39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.
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Stata uses maximum likelihood (ML) to fit LME and GLME models. The ML estimates are based
on the usual application of likelihood theory, given the distributional assumptions of the model. In
addition, for linear mixed-effects models, mixed offers the method of restricted maximum likelihood
(REML). The basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts
of the response that do not depend on the fixed effects 3 but instead depend only on the variance
components to be estimated. You then apply ML methods by using the distribution of the linear
contrasts to form the likelihood; see the Methods and formulas section of [ME] mixed for a detailed
discussion of ML and REML methods in the context of linear mixed-effects models.

Log-likelihood calculations for fitting any LME or GLME model require integrating out the random
effects. For LME models, this integral has a closed-form solution; for GLME models, it does not. In
dealing with this difficulty, early estimation methods avoided the integration altogether. Two such
popular methods are the closely related penalized quasi-likelihood (PQL) and marginal quasi-likelihood
(MQL) (Breslow and Clayton 1993). Both PQL and MQL use a combination of iterative reweighted
least squares (see [R] glm) and standard estimation techniques for fitting LME models. Efficient
computational methods for fitting LME models have existed for some time (Bates and Pinheiro 1998;
Littell et al. 2006), and PQL and MQL inherit this computational efficiency. However, both of these
methods suffer from two key disadvantages. First, they have been shown to be biased, and this bias
can be severe when clusters are small or intracluster correlation is high (Rodriguez and Goldman 1995;
Lin and Breslow 1996). Second, because they are “quasi-likelihood” methods and not true likelihood
methods, their use prohibits comparing nested models via likelihood-ratio (LR) tests, blocking the
main avenue of inference involving variance components.

The advent of modern computers has brought with it the development of more computationally
intensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte
Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion
of these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log
likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log likelihood itself
is estimated, this method has the advantage of permitting LR tests for comparing nested models. Also,
if done correctly, quadrature approximations can be quite accurate, thus minimizing bias. meglm and
the other me commands support three types of Gauss—Hermite quadratures: mean—variance adaptive
Gauss—Hermite quadrature (MVAGH), mode-curvature adaptive Gauss—Hermite quadrature (MCAGH),
and nonadaptive Gauss—Hermite quadrature (GHQ); see Methods and formulas of [ME] meglm for
a detailed discussion of these quadrature methods. A fourth method, the Laplacian approximation,
that does not involve numerical integration is also offered; see Computation time and the Laplacian
approximation below and Methods and formulas of [ME] meglm for a detailed discussion of the
Laplacian approximation method.

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, me commands can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with
many random coefficients, models with many estimable parameters (both fixed effects and variance
components), or any combination thereof.

Computation time will also depend on hardware and other external factors but in general is
(roughly) a function of p?{M + M (Ng)?}, where p is the number of estimable parameters, M is
the number of lowest-level (smallest) clusters, N¢ is the number of quadrature points, and g, is the
total dimension of the random effects, that is, the total number of random intercepts and coefficients
at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time
is (Ng)?. However, because this is a power function, this factor can get prohibitively large. For
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example, using five quadrature points for a model with one random intercept and three random
coefficients, we get (Ng)% = 5% = 625. Even a modest increase to seven quadrature points would
increase this factor by almost fourfold (7% = 2,401), which, depending on M and p, could drastically
slow down estimation. When fitting mixed-effects models, you should always assess whether the
approximation is adequate by refitting the model with a larger number of quadrature points. If the
results are essentially the same, the lower number of quadrature points can be used.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you
the option to choose a (possibly) less accurate solution in the interest of getting quicker results.
Toward this end is the limiting case of Ng = 1, otherwise known as the Laplacian approximation; see
Methods and formulas of [ME] meglm. The computational benefit is evident—1 raised to any power
equals 1—and the Laplacian approximation has been shown to perform well in certain situations
(Liu and Pierce 1994; Tierney and Kadane 1986). When using Laplacian approximation, keep the
following in mind:

1. Fixed-effects parameters and their standard errors are well approximated by the Laplacian method.
Therefore, if your interest lies primarily here, then the Laplacian approximation may be a viable
alternative.

2. Estimates of variance components exhibit bias, particularly the variances.

3. The model log likelihood and comparison LR test are in fair agreement with statistics obtained via
quadrature methods.

Although this is by no means the rule, we find the above observations to be fairly typical based
on our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2
on the basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself
more in the estimated variance components than in the estimates of the fixed effects as well as at the
lower levels in higher-level models.

Item 3 is of particular interest, because it demonstrates that the Laplacian approximation can
produce a decent estimate of the model log likelihood. Consequently, you can use the Laplacian
approximation during the model building phase of your analysis, during which you are comparing
competing models by using LR tests. Once you settle on a parsimonious model that fits well, you
can then increase the number of quadrature points and obtain more accurate parameter estimates for
further study.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed
here. This behavior depends primarily on cluster size and intracluster correlation, but the relative
influence of these factors is unclear. The idea behind the Laplacian approximation is to approximate
the posterior density of the random effects given the response with a normal distribution; see Methods
and formulas of [ME] meglm. Asymptotic theory dictates that this approximation improves with larger
clusters. Of course, the key question, as always, is “How large is large enough?” Also, there are data
situations where the Laplacian approximation performs well even with small clusters. Therefore, it
is difficult to make a definitive call as to when you can expect the Laplacian approximation to yield
accurate results across all aspects of the model.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge
when used with your data. The default gradient-based method used by mixed-effects commands is
the Newton—Raphson algorithm, requiring the calculation of a gradient vector and Hessian (second-
derivative) matrix; see [R] ml.
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A failure to converge can take any one of three forms:
1. repeated nonconcave or backed-up iterations without convergence;

2. a Hessian (second-derivative) calculation that has become asymmetric, unstable, or has missing
values; or

3. the message “standard-error calculation has failed” when computing standard errors.

All three situations essentially amount to the same thing: the Hessian calculation has become unstable,
most likely because of a ridge in the likelihood function, a subsurface of the likelihood in which all
points give the same value of the likelihood and for which there is no unique solution.

Such behavior is usually the result of one of the following two situations:

A. A model that is not identified given the data, for example, fitting the three-level nested random
intercept model

Yjk = X8+ u,(f’) + uﬁ) + €k

without any replicated measurements at the (j,k) level, that is, with only one ¢ per (j,k)
2

combination. This model is unidentified for such data because the random intercepts u,’ are
confounded with the overall errors €.

B. A model that contains a variance component whose estimate is really close to 0. When this occurs,
a ridge is formed by an interval of values near 0, which produce the same likelihood and look
equally good to the optimizer.

For LME models, one useful way to diagnose problems of nonconvergence is to rely on the
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), normally used by mixed
only as a means of refining starting values; see Diagnosing convergence problems of [ME] mixed for
details.

If your data and model are nearly unidentified, as opposed to fully unidentified, you may be
able to obtain convergence with standard errors by changing some of the settings of the gradient-
based optimization. Adding the difficult option can be particularly helpful if you are seeing
many “nonconcave” messages; you may also consider changing the technique() or using the
nonrtolerance option; see [R] maximize.

Regardless of how the convergence problem revealed itself, you may try to obtain better starting
values; see Obtaining better starting values in [ME] meglm for details.

Distribution theory for likelihood-ratio test

When determining the asymptotic distribution of an LR test comparing two nested mixed-effects
models, issues concerning boundary problems imposed by estimating strictly positive quantities (that
is, variances) can complicate the situation. For example, when performing LR tests involving linear
mixed-effects models (whether comparing with linear regression within mixed or comparing two
separate linear mixed-effects models with 1rtest), you may thus sometimes see a test labeled as
chibar rather than the usual chi2, or you may see a chi2 test with a note attached stating that the
test is conservative or possibly conservative depending on the hypothesis being tested.

At the heart of the issue is the number of variances being restricted to 0 in the reduced model.
If there are none, the usual asymptotic theory holds, and the distribution of the test statistic is x?
with degrees of freedom equal to the difference in the number of estimated parameters between both
models.
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When there is only one variance being set to 0 in the reduced model, the asymptotic distribution
of the LR test statistic is a 50:50 mixture of a X;% and a X;Q) 11 distribution, where p is the number
of other restricted parameters in the reduced model that are unaffected by boundary conditions. Stata
labels such test statistics as chibar and adjusts the significance levels accordingly. See Self and
Liang (1987) for the appropriate theory or Gutierrez, Carter, and Drukker (2001) for a Stata-specific
discussion.

When more than one variance parameter is being set to O in the reduced model, however, the
situation becomes more complicated. For example, consider a comparison test versus linear regression
for a mixed model with two random coefficients and unstructured covariance matrix

— C7(2) 001
o g01 g %

Because the random component of the mixed model comprises three parameters (o3, 001,07),
on the surface it would seem that the LR comparison test would be distributed as x3. However, two
complications need to be considered. First, the variances ag and a% are restricted to be positive, and
second, constraints such as o7 = 0 implicitly restrict the covariance o1 to be 0 as well. From a

technical standpoint, it is unclear how many parameters must be restricted to reduce the model to
linear regression.

Because of these complications, appropriate and sufficiently general distribution theory for the
more-than-one-variance case has yet to be developed. Theory (for example, Stram and Lee [1994])
and empirical studies (for example, McLachlan and Basford [1988]) have demonstrated that, whatever
the distribution of the LR test statistic, its tail probabilities are bounded above by those of the x?
distribution with degrees of freedom equal to the full number of restricted parameters (three in the
above example).

The mixed and me commands use this reference distribution, the X2 with full degrees of freedom,
to produce a conservative test and place a note in the output labeling the test as such. Because the
displayed significance level is an upper bound, rejection of the null hypothesis based on the reported
level would imply rejection on the basis of the actual level.

Examples

Two-level models

> Example 1: Growth-curve model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth, but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weight,; = fo + Siweek;; + u; + €;;

for i =1,...,9 weeks and j = 1,...,48 pigs. The fixed portion of the model, 3y + Biweek;;,
simply states that we want one overall regression line representing the population average. The random
effect u; serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. use http://www.stata-press.com/data/r13/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id:
Performing EM optimization:
Performing gradient-based optimization:

Iteration O: log likelihood = -1014.9268
Iteration 1: log likelihood = -1014.9268

Computing standard errors:

Mixed-effects ML regression Number of obs = 432

Group variable: id Number of groups = 48

Obs per group: min = 9

avg = 9.0

max = 9

Wald chi2(1) = 25337.49

Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coef.  Std. Err. z P>|z| [95% Conf. Intervall

week 6.209896 .0390124  159.18  0.000 6.133433 6.286359

_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
id: Identity

var (_cons) 14.81751  3.124226 9.801716 22.40002

var (Residual) 4.383264  .3163348 3.805112 5.04926

LR test vs. linear regression: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

We explain the output in detail in example 1 of [ME] mixed. Here we only highlight the most important
points.

1. The first estimation table reports the fixed effects. We estimate Sy = 19.36 and 5, = 6.21.

2. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity, meaning that these are random effects at the id (pig) level and
that their variance—covariance matrix is a multiple of the identity matrix; that is, ¥ = 031. The
estimate of 52 is 14.82 with standard error 3.12.

3. The row labeled var (Residual) displays the estimated standard deviation of the overall error
term; that is, 862 = 4.38. This is the variance of the level-one errors, that is, the residuals.

4. An LR test comparing the model with one-level ordinary linear regression is provided and is highly
significant for these data.

We can predict the random intercept u; and list the predicted random intercept for the first 10
pigs by typing
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. predict r_int, reffects
. egen byte tag = tag(id)
. list id r_int if id<=10 & tag

id r_int

1. 1 -1.683105

10. 2 .8987018
19. 3 -1.952043
28. 4 -1.79068
37. 5 -3.189159
46. 6 -3.780823
55. 7 -2.382344
64. 8 -1.952043
73. 9 -6.739143
82. 10 1.16764

In example 3 of [ME] mixed, we show how to fit a random-slope model for these data, and in
example 1 of [ME] mixed postestimation, we show how to plot the estimated regression lines for

each of the pigs.
d

> Example 2: Split-plot design

Here we replicate the example of a split-plot design from Kuehl (2000, 477). The researchers
investigate the effects of nitrogen in four different chemical forms and the effects of thatch accumulation
on the quality of golf turf. The experimental plots were arranged in a randomized complete block
design with two replications. After two years of nitrogen treatment, the second treatment factor, years
of thatch accumulation, was added to the experiment. Each of the eight experimental plots was split
into three subplots. Within each plot, the subplots were randomly assigned to accumulate thatch for
a period of 2, 5, and 8 years.
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. use http://www.stata-press.com/data/r13/clippings, clear
(Turfgrass experiment)

. describe

Contains data from http://www.stata-press.com/data/r13/clippings.dta

obs: 24 Turfgrass experiment

vars: 4 21 Feb 2013 14:57

size: 168

storage display value
variable name  type format label variable label
chlorophyll float  %9.0g Chlorophyll content (mg/g) of
grass clippings

thatch byte %9.0g Years of thatch accumulation
block byte %9.0g Replication
nitrogen byte %17.0g nitrolab Nitrogen fertilizer
Sorted by:

Nitrogen treatment is stored in the variable nitrogen, and the chemicals used are urea, ammonium
sulphate, isobutylidene diurea (IBDU), and sulphur-coated urea (urea SC). The length of thatch
accumulation is stored in the variable thatch. The response is the chlorophyll content of grass
clippings, recorded in mg/g and stored in the variable chlorophyll. The block variable identifies
the replication group.

There are two sources of variation in this example corresponding to the whole-plot errors and the
subplot errors. The subplot errors are the residual errors. The whole-plot errors represents variation
in the chlorophyll content across nitrogen treatments and replications. We create the variable wpunit
to represent the whole-plot units that correspond to the levels of the nitrogen treatment and block
interaction.

. egen wpunit = group(nitrogen block)

. mixed chlorophyll ibn.nitrogen##ibn.thatch ibn.block, noomitted noconstant ||
> wpunit:, reml

note: 8.thatch omitted because of collinearity

note: 1.nitrogen#8.thatch omitted because of collinearity

note: 2.nitrogen#8.thatch omitted because of collinearity
note: 3.nitrogen#8.thatch omitted because of collinearity
note: 4.nitrogen#2.thatch omitted because of collinearity
note: 4.nitrogen#5.thatch omitted because of collinearity
note: 4.nitrogen#8.thatch omitted because of collinearity
note: 2.block omitted because of collinearity

Performing EM optimization:

Performing gradient-based optimization:

Iteration O: log restricted-likelihood = -13.212401
Iteration 1: log restricted-likelihood = -13.203149
Iteration 2: log restricted-likelihood = -13.203125
Iteration 3: log restricted-likelihood = -13.203125
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Computing standard errors:

Mixed-effects REML regression Number of obs = 24
Group variable: wpunit Number of groups = 8
Obs per group: min = 3
avg = 3.0
max = 3
Wald chi2(13) 2438.36
Log restricted-likelihood = -13.203125 Prob > chi2 = 0.0000
chlorophyll Coef.  Std. Err. z P>|z| [95% Conf. Intervall
nitrogen
urea 5.245833 .3986014 13.16  0.000 4.464589 6.027078
ammonium .. 5.945833 .3986014 14.92  0.000 5.164589 6.727078
IBDU 7.945834 .3986014 19.93  0.000 7.164589 8.727078
Urea (SC) 8.595833 .3986014 21.56  0.000 7.814589 9.377078
thatch
2 -1.1 .4632314 -2.37 0.018 -2.007917  -.1920828
5 .1500006 .4632314 0.32 0.746 -.7579163 1.057917
nitrogen#
thatch
urea#2 -.1500005 .6551081 -0.23 0.819 -1.433989 1.133988
urea#5 .0999994 .6551081 0.15 0.879 -1.183989 1.383988
ammonium .. #
2 .8999996 .6551081 1.37 0.169 -.3839887 2.183988
ammonium .. #
5 -.1000006 .6551081 -0.15  0.879 -1.383989 1.183988
IBDU#2 -.2000005 .6551081 -0.31 0.760 -1.483989 1.083988
IBDU#5 -1.950001 .6551081 -2.98 0.003 -3.233989 -.6660124
block
1 -.2916666 .2643563 -1.10 0.270 -.8097955 .2264622
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
wpunit: Identity
var (_cons) .0682407 .1195933 .0021994 2.117344
var (Residual) .2145833 .1072917 .080537 .6717376

LR test vs. linear regression: chibar2(01) =

0.53 Prob >= chibar2 = 0.2324



me — Introduction to multilevel mixed-effects models 19

We can calculate the cell means for source of nitrogen and years of thatch accumulation by using
margins.

. margins thatch#nitrogen

Predictive margins Number of obs = 24
Expression : Linear prediction, fixed portion, predict()
Delta-method

Margin  Std. Err. z P>|z| [95% Conf. Intervall

thatch#

nitrogen
2#urea 3.85 .3760479 10.24  0.000 3.11296 4.58704

2 #
ammonium .. 5.6 .3760479 14.89  0.000 4.86296 6.33704
2#IBDU 6.5 .3760479 17.29  0.000 5.76296 7.23704
2#Urea (SC) 7.35 .3760479 19.55  0.000 6.61296 8.087041
S#urea 5.35 .3760479 14.23  0.000 4.61296 6.087041

5 #
ammonium .. 5.85 .3760479 15.56  0.000 5.11296 6.58704
5#IBDU 6 .3760479 15.96  0.000 5.26296 6.73704
5#Urea (SC) 8.6 .3760479 22.87 0.000 7.86296 9.337041
8#urea 5.1 .3760479 13.56  0.000 4.36296 5.837041

8 #
ammonium .. 5.8 .3760479 15.42  0.000 5.06296 6.53704
8#IBDU 7.8 .3760479 20.74 0.000 7.06296 8.537041
8#Urea (SC) 8.45 .3760479 22.47  0.000 7.712959 9.18704

It is easier to see the effect of the treatments if we plot the impact of the four nitrogen and the
three thatch treatments. We can use marginsplot to plot the means of chlorophyll content versus
years of thatch accumulation by nitrogen source.



20 me — Introduction to multilevel mixed-effects models

marginsplot, ytitle(Chlorophyll (mg/g)) title("")

subtitle("Mean chlorophyll content of grass clippings versus"

"nitrogen source for years of thatch accumulation") xsize(3) ysize(3.2)
legend(cols(1) position(5) ring(0) region(lwidth(none)))

ylabel(0(2)10, angle(0))

Variables that uniquely identify margins: thatch nitrogen
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We can see an increase in the mean chlorophyll content over the years of thatch accumulation for
all but one nitrogen source.

The marginal means can be obtained by using margins on one variable at a time.

. margins thatch

Predictive margins Number of obs = 24
Expression : Linear prediction, fixed portion, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
thatch
2 5.825 .188024 30.98 0.000 5.45648 6.19352
5 6.45 .188024 34.30 0.000 6.08148 6.81852
8 6.7875 .188024 36.10 0.000 6.41898 7.15602




me — Introduction to multilevel mixed-effects models 21

. margins nitrogen

Predictive margins Number of obs = 24

Expression : Linear prediction, fixed portion, predict()

Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
nitrogen

urea 4.766667 .2643563 18.03  0.000 4.248538 5.284796
ammonium .. 5.75 .2643563 21.75  0.000 5.231871 6.268129
IBDU 6.766667 .2643563 25.60 0.000 6.248538 7.284796
Urea (SC) 8.133333 .2643563 30.77  0.000 7.615205 8.651462

Marchenko (2006) shows more examples of fitting other experimental designs using linear mixed-

effects models.

> Example 3: Binomial counts

4

We use the data taken from Agresti (2013, 219) on graduate school applications to the 23 departments
within the College of Liberal Arts and Sciences at the University of Florida during the 1997-1998
academic year. The dataset contains the department ID (department), the number of applications
(napplied), and the number of students admitted (nadmitted) cross-classified by gender (female).

. use http://www.stata-press.com/data/r13/admissions, clear

(Graduate school admissions d

. describe

ata)

Contains data from http://www.stata-press.com/data/r13/admissions.dta

obs: 46 Graduate school admissions data
vars: 4 25 Feb 2013 09:28

size: 460 (_dta has notes)

storage display value

variable name type format label variable label
department long %8.0g dept department id
nadmitted byte %8.0g number of admissions
napplied float  %9.0g number of applications
female byte %8.0g =1 if female, =0 if male
Sorted by:

We wish to investigate whether admission decisions are independent of gender. Given department
and gender, the probability of admission follows a binomial model, that is, Pr(Y;; = v;;)
Binomial(n;;, m;;), where ¢ = {0,1} and j = 1,...,23. We fit a mixed-effects binomial logistic

model with a random intercept at the department level.
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. melogit nadmitted female || department:, binomial(napplied) or
Fitting fixed-effects model:

Iteration O: log likelihood = -302.47786
Iteration 1: log likelihood = -300.00004
Iteration 2: log likelihood = -299.99934
Iteration 3: log likelihood = -299.99934
Refining starting values:

Grid node O: log likelihood = -145.08843
Fitting full model:

Iteration O: log likelihood = -145.08843
Iteration 1: log likelihood = -140.8514
Iteration 2: log likelihood = -140.61709

Iteration 3: log likelihood = -140.61628
Iteration 4: log likelihood = -140.61628

Mixed-effects logistic regression Number of obs = 46
Binomial variable: napplied

Group variable: department Number of groups = 23

Obs per group: min = 2

avg = 2.0

max = 2

Integration method: mvaghermite Integration points = 7

Wald chi2(1) = 2.14

Log likelihood = -140.61628 Prob > chi2 = 0.1435

nadmitted | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

female 1.176898 .1310535 1.46 0.144 .9461357 1.463944

_cons .7907009 .2057191 -0.90 0.367 .4748457 1.316655

department
var (_cons) 1.345383 .460702 .6876497 2.632234
LR test vs. logistic regression: chibar2(01) = 318.77 Prob>=chibar2 = 0.0000

The odds of being admitted are higher for females than males but without statistical significance.
The estimate of 52 is 1.35 with the standard error of 0.46. An LR test comparing the model with
the one-level binomial regression model favors the random-intercept model, indicating that there is a
significant variation in the number of admissions between departments.

We can further assess the model fit by performing a residual analysis. For example, here we predict
and plot Anscombe residuals.
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. predict anscres, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. twoway (scatter anscres department if female, msymbol(S))
> (scatter anscres department if !female, msymbol(T)),

> yline(-2 2) xline(1/23, lwidth(vvthin) lpattern(dash))

> xlabel(1/23) legend(label(l "females") label(2 "males"))
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Anscombe residuals are constructed to be approximately normally distributed, thus residuals that
are above two in absolute value are usually considered outliers. In the graph above, the residual
for female admissions in department 2 is a clear outlier, suggesting a poor fit for that particular
observation; see [ME] meglm postestimation for more information about Anscombe residuals and
other model diagnostics tools.

d
Covariance structures
> Example 4: Growth-curve model with correlated random effects

Here we extend the model from example 1 of [ME] me to allow for a random slope on week and
an unstructured covariance structure between the random intercept and the random slope on week.
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. use http://www.stata-press.com/data/r13/pig, clear

(Longitudinal analysis of pig weights)

. mixed weight week || id: week, covariance(unstructured)

Performing EM optimization:
Performing gradient-based optimization:

Iteration O: log likelihood = -868.96185
Iteration 1: log likelihood = -868.96185

Computing standard errors:

Mixed-effects ML regression Number of obs = 432

Group variable: id Number of groups = 48

Obs per group: min = 9

avg = 9.0

max = 9

Wald chi2(1) = 4649.17

Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coef.  Std. Err. z P>|z| [95% Conf. Intervall

week 6.209896 .0910745 68.18  0.000 6.031393 6.388399

_cons 19.35561 .3996387 48.43  0.000 18.57234 20.13889

Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
id: Unstructured

var (week) .3715251 .0812958 .2419532 .570486

var (_cons) 6.823363 1.566194 4.351297 10.69986

cov(week, _cons) -.0984378 .2545767 -.5973991 .4005234

var (Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear regression: chi2(3) =

The unstructured covariance structure allows for correlation between the random effects. Other
covariance structures supported by mixed, besides the default independent, include identity and
exchangeable; see [ME] mixed for details. You can also specify multiple random-effects equations
at the same level, in which case the covariance types can be combined to form more complex

764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

blocked-diagonal covariance structures; see example 5 below.

We can predict the fitted values and plot the estimated regression line for each of the pigs. The

fitted values are based on both the fixed and the random effects.
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. predict wgt_hat, fitted
. twoway connected wgt_hat week if id<=10, connect(L) ytitle("Predicted weight")

o |
©

Predicted weight
60
1

40

1

20

> Example 5: Blocked-diagonal covariance structures

In this example, we fit a logistic mixed-effects model with a blocked-diagonal covariance structure
of random effects.

We use the data from the 1989 Bangladesh fertility survey (Huq and Cleland 1990), which polled
1,934 Bangladeshi women on their use of contraception. The women sampled were from 60 districts,
identified by the variable district. Each district contained either urban or rural areas (variable
urban) or both. The variable c_use is the binary response, with a value of 1 indicating contraceptive
use. Other covariates include mean-centered age and three indicator variables recording number of
children. Below we fit a standard logistic regression model amended to have random coefficients on
each indicator variable for children and an overall district random intercept.
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. use http://www.stata-press.com/data/r13/bangladesh, clear
(Bangladesh Fertility Survey, 1989)

. melogit c_use urban age child* || district: child*, cov(exchangeable)
> || district:, or

Fitting fixed-effects model:

Iteration O: log likelihood = -1229.5485
Iteration 1: log likelihood = -1228.5268
Iteration 2: log likelihood = -1228.5263
Iteration 3: log likelihood = -1228.5263

Refining starting values:
Grid node O: log likelihood = -1234.3979
Fitting full model:

Iteration 0: log likelihood = -1234.3979 (not concave)
Iteration 1: log likelihood = -1208.0052
Iteration 2: log likelihood = -1206.4497
Iteration 3: log likelihood = -1206.2417
Iteration 4: log likelihood = -1206.2397
Iteration 5: log likelihood = -1206.2397

Mixed-effects logistic regression Number of obs = 1934
Group variable: district Number of groups = 60
Obs per group: min = 2

avg = 32.2

max = 118

Integration method: mvaghermite Integration points = 7
Wald chi2(5) = 100.01

Log likelihood = -1206.2397 Prob > chi2 = 0.0000

( 1) [var(childi([district])]_cons - [var(child3[district])]_cons = 0

( 2) [cov(child2[district],childl[district])]_cons -
[cov(child3[district],child2[district])]_cons

( 3) [cov(child3[district],childl[district])]_cons -
[cov(child3[district],child2[district])]_cons = 0O

( 4) [var(child2[district])]_cons - [var(child3[district])]_cons = 0O

0

c_use 0dds Ratio  Std. Err. z P>zl [95% Conf. Intervall]

urban 2.105163 .2546604 6.15 0.000 1.660796 2.668426

age .9735765 .0077461 -3.37 0.001 .9585122 .9888775

childl 2.992596 .502149 6.53 0.000 2.153867 4.157931

child2 3.879345 .7094125 7.41 0.000 2.710815 5.551584

child3 3.774627 .7055812 7.11 0.000 2.616744 5.444863

_cons .1859471 .0274813 -11.38 0.000 .1391841 .2484214

district

var(childl) .0841518 .0880698 .0108201 .654479

var (child?2) .0841518 .0880698 .0108201 .654479

var(child3) .0841518 .0880698 .0108201 .654479

var (_cons) .1870273 .0787274 .0819596 .426786

district

cov(child2,

childl) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(child3,

childl) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(child3,

child2) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

LR test vs. logistic regression: chi2(3) = 44.57  Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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The fixed effects can be interpreted just as you would the output from logit. Urban women have
roughly double the odds of using contraception as compared with their rural counterparts. Having
any number of children will increase the odds from three- to fourfold when compared with the base
category of no children. Contraceptive use also decreases with age.

Because we specified cov(exchangeable), the estimated variances on each indicator variable
for children are constrained to be the same, and the estimated covariances on each indicator variable
for children are constrained to be the same. More complex covariance structures with constraints can
be specified using covariance(pattern()) and covariance(fixed()); see example 6 below.

N

> Example 6: Meta analysis

In this example, we present a mixed-effects model for meta analysis of clinical trials. The term
“meta-analysis” refers to a statistical analysis that involves summary data from similar but independent
studies.

Turner et al. (2000) performed a study of nine clinical trials examining the effect of taking diuretics
during pregnancy on the risk of pre-eclampsia. The summary data consist of the log odds-ratio
(variable or) estimated from each study, and the corresponding estimated variance (variable varor).
The square root of the variance is stored in the variable std and the trial identifier is stored in the
variable trial.

. use http://www.stata-press.com/data/r13/diuretics
(Meta analysis of clinical trials studying diuretics and pre-eclampsia)

. list

trial or varor std
1 1 .04 .16 4
2 2 -.92 .12 .3464102
3 3 -1.12 .18 .4242641
4 4 -1.47 .3 .B477226
5 5 -1.39 .11 .3316625
6 6 -.3 .01 .1
7 7 -.26 .12 .3464102
8 8 1.09 .69 .8306624
9 9 .14 .07 .2645751

In a random-effects modeling of summary data, the observed log odds-ratios are treated as a
continuous outcome and assumed to be normally distributed, and the true treatment effect varies
randomly among the trials. The random-effects model can be written as

Yi ~ N(Q—i—ui,of)
vi ~ N(0,7%)

where y; is the observed treatment effect corresponding to the ith study, 6 + v; is the true treatment
effect, 07;2 is the variance of the observed treatment effect, and 7 is the between-trial variance
component. Our aim is to estimate 6, the global mean.

Notice that the responses y; do not provide enough information to estimate this model, because
we cannot estimate the group-level variance component from a dataset that contains one observation
per group. However, we already have estimates for the o;’s, therefore we can constrain each o; to
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be equal to its estimated value, which will allow us to estimate 6 and 7. We use meglm to estimate
this model because the mixed command does not support constraints.

In meglm, one way to constrain a group of individual variances to specific values is by using the fixed
covariance structure (an alternative way is to define each constraint individually with the constraint
command and specify them in the constraints() option). The covariance(fixed()) option
requires a Stata matrix defining the constraints, thus we first create matrix £ with the values of o;,
stored in variable varor, on the main diagonal. We will use this matrix to constrain the variances.

. mkmat varor, mat(f)
. mat £ = diag(f)

In the random-effects equation part, we need to specify nine random slopes, one for each trial.
Because random-effects equations do not support factor variables (see [U] 11.4.3 Factor variables), we
cannot use the i.trial notation. Instead, we tabulate the variable trial and use the generate ()
option to create nine dummy variables named tri, tr2, ..., tr9. We can then fit the model.
Because the model is computationally demanding, we use Laplacian approximation instead of the
default mean-variance adaptive quadrature; see Computation time and the Laplacian approximation
above for details.
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. qui tabulate trial, gen(tr)
. meglm or || _all: tril-tr9, nocons cov(fixed(f)) intm(laplace) nocnsreport
Fitting fixed-effects model:

log likelihood = -10.643432
log likelihood = -10.643432

Refining starting values:

Grid node O: log likelihood = -10.205455
Fitting full model:

Iteration O: log likelihood = -10.205455
Iteration 1: log likelihood = -9.4851561
Iteration 2: log likelihood = -9.4587068
Iteration 3: log likelihood = -9.4552982

4.

Iteration 4: log likelihood = -9.4552759
Iteration 5: log likelihood = -9.4552759

Iteration O:
Iteration 1:

(backed up)

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: identity
Group variable: _all Number of groups = 1
Obs per group: min = 9
avg = 9.0
max = 9
Integration method: laplace

Wald chi2(0)

Log likelihood = -9.4552759 Prob > chi2
or Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129707
_all
var (trl) .16 (constrained)
var (tr2) .12 (constrained)
var (tr3) .18 (constrained)
var (tr4) .3 (constrained)
var (tr5) .11  (constrained)
var (tr6) .01 (constrained)
var (tr7) .12 (constrained)
var (tr8) .69 (constrained)
var (tr9) .07 (constrained)
var (e.or) .2377469 .1950926 .0476023 1.187413

We estimate 0 = —0.52, which agrees with the estimate reported by Turner et al. (2000).

We can fit the above model in a more efficient way. We can consider the trials as nine independent
random variables, each with variance unity, and each being multiplied by a different standard error.
To accomplish this, we treat trial as a random-effects level, use the standard deviations of the log
odds-ratios as a random covariate at the trial level, and constrain the variance component of trial
to unity.
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. constraint 1 _b[var(std[triall):_cons] =1
. meglm or || trial: std, nocons constraints(1)
Fitting fixed-effects model:
Iteration O: log likelihood = -10.643432
Iteration 1: log likelihood = -10.643432
Refining starting values:
Grid node O: log likelihood = -10.205455
Fitting full model:
Iteration O: log likelihood = -10.205455
Iteration 1: log likelihood = -9.4851164 (backed up)
Iteration 2: log likelihood =  -9.45869
Iteration 3: log likelihood = -9.4552794

4.

Iteration 4: log likelihood = -9.4552759
Iteration 5: log likelihood = -9.4552759

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: identity
Group variable: trial Number of groups = 9
Obs per group: min = 1
avg = 1.0
max = 1
Integration method: mvaghermite Integration points = 7
Wald chi2(0)
Log likelihood = -9.4552759 Prob > chi2
(1) [var(std[triall)]_cons =1
or Coef.  Std. Err. z P>|z| [95% Conf. Intervall
_cons -.5166151 .2059448 -2.51  0.012 -.92025694  -.1129708
trial
var (std) 1 (constrained)
var(e.or) .2377469 .1950926 .0476023 1.187413

The results are the same, but this model took a fraction of the time compared with the less efficient
specification.

d

Three-level models

The methods we have discussed so far extend from two-level models to models with three or
more levels with nested random effects. By “nested”, we mean that the random effects shared within
lower-level subgroups are unique to the upper-level groups. For example, assuming that classroom
effects would be nested within schools would be natural, because classrooms are unique to schools.
Below we illustrate a three-level mixed-effects ordered probit model.

> Example 7: Three-level ordinal response model

In this example, we fit a three-level ordered probit model. The data are from the Television,
School, and Family Smoking Prevention and Cessation Project (Flay et al. 1988; Rabe-Hesketh and
Skrondal 2012, chap. 11), where schools were randomly assigned into one of four groups defined
by two treatment variables. Students within each school are nested in classes, and classes are nested
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in schools. The dependent variable is the tobacco and health knowledge (THK) scale score collapsed
into four ordered categories. We regress the outcome on the treatment variables and their interaction
and control for the pretreatment score.

. use http://www.stata-press.com/data/r13/tvsfpors, clear
. meoprobit thk prethk cc##tv || school: || class:
Fitting fixed-effects model:

Iteration O: log likelihood = -2212.775
Iteration 1: log likelihood = -2127.8111
Iteration 2: log likelihood = -2127.7612
Iteration 3: log likelihood = -2127.7612

Refining starting values:

Grid node O: log likelihood = -2195.6424

Fitting full model:

Iteration 0: log likelihood = -2195.6424 (not concave)

Iteration 1: log likelihood = -2167.9576 (not concave)
Iteration 2: log likelihood = -2140.2644 (not concave)
Iteration 3: log likelihood = -2128.6948 (not concave)
Iteration 4: log likelihood = -2119.9225
Iteration 5: log likelihood = -2117.0947
Iteration 6: log likelihood = -2116.7004
Iteration 7: log likelihood = -2116.6981
Iteration 8: log likelihood = -2116.6981
Mixed-effects oprobit regression Number of obs = 1600
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 124.20
Log likelihood = -2116.6981 Prob > chi2 = 0.0000
thk Coef.  Std. Err. z P>|z| [95% Conf. Intervall
prethk .238841 .0231446 10.32  0.000 .1934784 .2842036
1l.cc .5254813 .1285816 4.09 0.000 .2734659 LTT74967
1.tv .1455573 .1255827 1.16  0.246 -.1005803 .3916949
ccH#tv
11 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251
/cutl -.074617 .1029791 -0.72  0.469 -.2764523 .1272184
/cut2 .6863046 .1034813 6.63 0.000 .4834849 .8891242
/cut3 1.413686 .1064889 13.28 0.000 1.204972 1.622401
school
var (_cons) .0186456 .0160226 .0034604 .1004695
school>class
var (_cons) .0519974 .0224014 .0223496 .1209745
LR test vs. oprobit regression: chi2(2) = 22.13  Prob > chi2 = 0.0000

Note: LR test is comservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the
class level (level two). The order in which these are specified (from left to right) is significant—
meoprobit assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will also suppress the rest
of the header.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

N

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed-effects models contain nested levels of random effects.

> Example 8: Crossed random effects

Returning to our longitudinal analysis of pig weights, suppose that we wish to fit

weight,; = fo + fiweek;; +u; +v; + €;; (11)
forthe i =1,...,9 weeks and j = 1,...,48 pigs and

Uj ~ N(O,ai); vj ~ N(O,m%); € ~ N(O,a?)

all independently. That is, we assume an overall population-average growth curve 5y + $1week and
a random pig-specific shift. In other words, the effect due to week, u;, is systematic to that week and
common to all pigs. The rationale behind (11) could be that, assuming that the pigs were measured
contemporaneously, we might be concerned that week-specific random factors such as weather and
feeding patterns had significant systematic effects on all pigs.

Model (11) is an example of a two-way crossed-effects model, with the pig effects v; being crossed
with the week effects u;. One way to fit such models is to consider all the data as one big cluster,
and treat u; and v; as a series of 9 + 48 = 57 random coefficients on indicator variables for week
and pig. The random effects u and the variance components G are now represented as
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U
) 2
_ U9 X _ O’ng 0
u=| N(0,G); G= [ 0 0_121148}
L V48

Because G is block diagonal, it can be represented as repeated-level equations. All we need is an ID
variable to identify all the observations as one big group and a way to tell mixed-effects commands
to treat week and pig as factor variables (or equivalently, as two sets of overparameterized indicator
variables identifying weeks and pigs, respectively). The mixed-effects commands support the special
group designation _all for the former and the R.varname notation for the latter.

. use http://www.stata-press.com/data/r13/pig

(Longitudinal analysis of pig weights)

. mixed weight week || _all: R.id || _all: R.week

Performing EM optimization:

Performing gradient-based optimization:

Iteration O: log likelihood -1013.824
Iteration 1: log likelihood = -1013.824

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1
Obs per group: min = 432
avg = 432.0
max = 432
Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000
weight Coef. Std. Err. z P>|z| [95% Conf. Intervall
week 6.209896 .05639313 115.14  0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56  0.000 18.11418 20.59705
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
_all: Identity
var (R.id) 14.83623  3.126142 9.816733 22.42231
_all: Identity
var (R.week) .0849874 .0868856 .0114588 .6303302
var (Residual) 4.297328 .3134404 3.724888 4.957741
LR test vs. linear regression: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We estimate o2 = 0.08 and 52 = 14.84.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you use R.varname, mixed-effects commands
handle the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant.
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Note that the column dimension of our random-effects design is 57. Computation time and memory
requirements grow (roughly) quadratically with the dimension of the random effects. As a result,
fitting such crossed-effects models is feasible only when the total column dimension is small to
moderate. For this reason, mixed-effects commands use the Laplacian approximation as the default
estimation method for crossed-effects models; see Computation time and the Laplacian approximation
above for more details.

It is often possible to rewrite a mixed-effects model in a way that is more computationally efficient.
For example, we can treat pigs as nested within the _all group, yielding the equivalent and more
efficient (total column dimension 10) way to fit (11):

. mixed weight week || _all: R.week || id:

The results of both estimations are identical, but the latter specification, organized at the cluster (pig)
level with random-effects dimension 1 (a random intercept) is much more computationally efficient.
Whereas with the first form we are limited in how many pigs we can analyze, there is no such
limitation with the second form.

All the mixed-effects commands—except mixed, meqrlogit, and meqrpoisson—automatically
attempt to recast the less efficient model specification into a more efficient one. However, this automatic
conversion may not be sufficient for some complicated mixed-effects specifications, especially if both
crossed and nested effects are involved. Therefore, we strongly encourage you to always specify the
more efficient syntax; see Rabe-Hesketh and Skrondal (2012) and Marchenko (2006) for additional
techniques to make calculations more efficient in more complex mixed-effects models.
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mecloglog — Multilevel mixed-effects complementary log-log regression

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
mecloglog depvar fe_equation [ |l re_equation] [ || re_equation ... ] [ , options]

where the syntax of fe_equation is
[indepvars] [zf] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
noconstant suppress constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
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options

Description

Model
binomial (varname | #)

constraints (constraints)

collinear

SE/Robust
vce (veetype)

Reporting

level (#)
eform
nocnsreport
notable
noheader
nogroup
nolrtest

display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

set binomial trials if data are in binomial form
apply specified linear constraints
keep collinear variables

vcetype may be oim, robust, or cluster clustvar

set confidence level; default is 1level (95)
report exponentiated coefficients

do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

do not perform likelihood-ratio test comparing with complementary
log-log regression

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method

set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0O; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description
mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit
mcaghermite mode-curvature adaptive Gauss—Hermite quadrature
ghermite nonadaptive Gauss—Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Complementary log-log regression

Description

mecloglog fits mixed-effects models for binary or binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with probability of success
determined by the inverse complementary log-log function.

Options
_ [Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern (matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.
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covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the 7, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, ) and (k,!) are constrained to be equal if matnameli, j| = mamamel[k,1].

binomial (varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] estimation options.

eform reports exponentiated coefficients and corresponding standard errors and confidence intervals.
This option may be specified either at estimation or upon replay.

nocnsreport; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents mecloglog from performing a likelihood-ratio test that compares the mixed-effects
complementary log-log model with standard (marginal) complementary log-log regression. This
option may also be specified upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (%fmt), pformat (% fint), sformat (% fimt), and
nolstretch; see [R] estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.
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The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for mecloglog are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mecloglog but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)}, noestimate, and dnumerical; see [ME]
meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

mecloglog is a convenience command for meglm with a cloglog link and a bernoulli or
binomial family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models

Introduction

Mixed-effects complementary log-log regression is complementary log-log regression containing
both fixed effects and random effects. In longitudinal data and panel data, random effects are useful
for modeling intracluster correlation; that is, observations in the same cluster are correlated because
they share common cluster-level random effects.
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Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012). Guo and Zhao (2000) and Rabe-Hesketh and Skrondal (2012, chap. 10) are good
introductory readings on applied multilevel modeling of binary data.

mecloglog allows for not just one, but many levels of nested clusters of random effects. For
example, in a three-level model you can specify random effects for schools and then random effects
for classes nested within schools. In this model, the observations (presumably, the students) comprise
the first level, the classes comprise the second level, and the schools comprise the third.

However, for simplicity, we here consider the two-level model, where for a series of M independent
clusters, and conditional on a set of fixed effects x;; and a set of random effects u;,

Pr(y;; = 1|xi5,u;) = H(x;;8 + ziju;) (1)

for j = 1,..., M clusters, with cluster j consisting of 2 = 1,...,n; observations. The responses are
the binary-valued y;;, and we follow the standard Stata convention of treating y;; = 1 if depvar,; #0
and treating y;; = O otherwise. The 1 X p row vector x;; are the covariates for the fixed effects,
analogous to the covariates you would find in a standard cloglog regression model, with regression
coefficients (fixed effects) (3. For notational convenience here and throughout this manual entry, we
suppress the dependence of y;; on x;;.

The 1 x g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean O and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;;, so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Finally, because this is cloglog regression, H () is the inverse of the complementary log-log function
that maps the linear predictor to the probability of a success (y;; = 1) with H (v) = 1—exp{— exp(v)}.

Model (1) may also be stated in terms of a latent linear response, where only y;; = I (yj‘J > 0)
is observed for the latent

* o

Yij = XijB + ziju; + €;
The errors €;; are independent and identically extreme-value (Gumbel) distributed with the mean
equal to Euler’s constant and variance o2 = 72 /6, independently of u;. This nonsymmetric error

distribution is an alternative to the symmetric error distribution underlying logistic and probit analysis
and is usually used when the positive (or negative) outcome is rare.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.
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mecloglog supports three types of Gauss—Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details. The simplest random-effects model
you can fit using mecloglog is the two-level model with a random intercept,

Pr(yi; = 1|u;) = H(xi;B + uj)

This model can also be fit using xtcloglog with the re option; see [XT] xtcloglog.

Below we present two short examples of mixed-effects cloglog regression; refer to [ME] melogit for
additional examples including crossed-effects models and to [ME] me and [ME] meglm for examples
of other random-effects models.

Two-level models

We begin with a simple application of (1) as a two-level model, because a one-level model, in our
terminology, is just standard cloglog regression; see [R] cloglog.

> Example 1

In example 1 of [XT] xtcloglog, we analyze unionization of women in the United States over
the period 1970-1988. The women are identified by the variable idcode. Here we refit that model
with mecloglog. Because the original example used 12 integration points by default, we request 12
integration points as well.
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. use http://www.stata-press.com/data/r13/union
(NLS Women 14-24 in 1968)

. mecloglog union age grade not_smsa south##c.year || idcode:, intpoints(12)
Fitting fixed-effects model:

Iteration O: log likelihood = -14237.139
Iteration 1: log likelihood = -13546.159
Iteration 2: log likelihood = -13540.611
Iteration 3: log likelihood = -13540.607
Iteration 4: log likelihood = -13540.607

Refining starting values:

Grid node O: log likelihood = -11104.448
Fitting full model:

Iteration O: log likelihood = -11104.448
Iteration 1: log likelihood = -10617.891
Iteration 2: log likelihood = -10537.919
Iteration 3: log likelihood = -10535.946

4-

Iteration 4: log likelihood = -10535.941
Iteration 5: log likelihood = -10535.941

Mixed-effects cloglog regression Number of obs = 26200
Group variable: idcode Number of groups = 4434
Obs per group: min = 1
avg = 5.9
max = 12
Integration method: mvaghermite Integration points = 12
Wald chi2(6) = 248.12
Log likelihood = -10535.941 Prob > chi2 = 0.0000
union Coef.  Std. Err. z P>|z| [95% Conf. Intervall
age .0128542 .0119441 1.08 0.282 -.0105559 .0362642
grade .0699965 .0138551 5.06 0.000 .0428409 .097152
not_smsa -.1982009 .0649258 -3.05 0.002 -.3254531  -.0709488
1.south -2.049901 .4892644 -4.19  0.000 -3.008842 -1.090961
year -.0006158 .0123999 -0.05 0.960 -.0249191 .0236875

south#c.year
1 .0164457 .0060685 2.71  0.007 .0045516 .0283399
_cons -3.277375 .6610552 -4.96  0.000 -4.57302 -1.981731

idcode

var (_cons) 3.489803 .1630921 3.184351 3.824555

LR test vs. cloglog regression: chibar2(01) = 6009.33 Prob>=chibar2 = 0.0000

The estimates are practically the same. xtcloglog reports the estimated variance component as a
standard deviation, o, = 1.86. mecloglog reports 8121 = 3.49, the square root of which is 1.87. We
find that age and education each have a positive effect on union membership, although the former is
not statistically significant. Women who live outside of metropolitan areas are less likely to unionize.

The estimated variance of the random intercept at the individual level, &2, is 3.49 with standard
error 0.16. The reported likelihood-ratio test shows that there is enough variability between women to
favor a mixed-effects cloglog regression over an ordinary cloglog regression; see Distribution theory
for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of variance components.

N
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Three-level models

Two-level models extend naturally to models with three or more levels with nested random effects.
Below we analyze the data from example 2 of [ME] melogit with mecloglog.

> Example 2

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the
cognitive ability of patients with schizophrenia compared with their relatives and control subjects.
Cognitive ability was measured as the successful completion of the “Tower of London”, a computerized
task, measured at three levels of difficulty. For all but one of the 226 subjects, there were three
measurements (one for each difficulty level). Because patients’ relatives were also tested, a family
identifier, family, was also recorded.

We fit a cloglog model with response dt1m, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families.
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. use http://www.stata-press.com/data/r13/towerlondon
(Tower of London data)

. mecloglog dtlm difficulty i.group || family: || subject:
Fitting fixed-effects model:

Iteration O: log likelihood = -337.21921
Iteration 1: log likelihood = -313.79023
Iteration 2: log likelihood = -313.56906
Iteration 3: log likelihood = -313.56888
Iteration 4: log likelihood = -313.56888

Refining starting values:
Grid node O: log likelihood = -314.57061
Fitting full model:
Iteration 0: log likelihood = -314.57061 (not concave)
Iteration 1: log likelihood = -308.82101
Iteration 2: log likelihood = -305.71841
Iteration 3: log likelihood = -305.26804
4-

Iteration 4: log likelihood = -305.26516
Iteration 5: log likelihood = -305.26516

Mixed-effects cloglog regression Number of obs = 677
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration points = 7
Wald chi2(3) = 83.32
Log likelihood = -305.26516 Prob > chi2 = 0.0000
dtlm Coef.  Std. Err. z P>|z| [95% Conf. Intervall
difficulty -1.342844 .1501508 -8.94 0.000 -1.637135 -1.048554
group
2 -.1331007 .269389 -0.49 0.621 -.6610935 . 3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411
_cons -1.6718 .2290325 -7.30 0.000 -2.120695  -1.222905
family
var (_cons) .2353453 .2924064 .0206122 2.687117
family>
subject
var (_cons) .7T737687 .4260653 .2629714 2.276742
LR test vs. cloglog regression: chi2(2) = 16.61  Prob > chi2 = 0.0002

Note: LR test is comnservative and provided only for reference.

Notes:

1. This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—mecloglog
assumes that subject is nested within family.
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2. The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families. You can suppress this table
with the nogroup or the noheader option, which will suppress the rest of the header as well.

After adjusting for the random-effects structure, the probability of successful completion of the
Tower of London decreases dramatically as the level of difficulty increases. Also, schizophrenics
(group==3) tended not to perform as well as the control subjects.

4

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results

mecloglog stores the following in e ():

e(converged)

Scalars
e() number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e(b)
e(k_eq_model) number of equations in overall model test
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) x?
e(p) significance
e(1ll_c) log likelihood, comparison model
e(chi2_c) x2, comparison model
e(df_c) degrees of freedom, comparison model
e(p-c) significance, comparison model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code

1 if converged, O otherwise
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Macros
e(cmd) mecloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(ivars) grouping variables
e (model) cloglog
e(title) title in estimation output
e(link) cloglog
e(family) bernoulli or binomial
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials
e(intmethod) integration method
e(n_quad) number of integration points
e(chi2type) Wald; type of model x>
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat

e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)

e(predict) program used to implement predict
Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N_g) group counts

e(g_min) group-size minimums

e(g_avg) group-size averages

e(g_max) group-size maximums

e(V) variance—covariance matrix of the estimator

e(V_modelbased) model-based variance
Functions

e(sample) marks estimation sample

Methods and formulas

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by mecloglog (option binomial()), the methods presented below are in terms of the
more general binomial mixed-effects model.

For a two-level binomial model, consider the response y;; as the number of successes from a
series of 7;; Bernoulli trials (replications). For cluster j, j = 1,..., M, the conditional distribution
of y; = (yj1,- .. ,yjnj)’, given a set of cluster-level random effects u, is
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o Tij 34 Tij—Yij
f(yjluy) = H Kyj> {H(nzg)}y {1 - H(mj)} ! ]
i=1 ¥
nj 7.
= exp (Z [yij log {H(ny;)} — (rij — yi;) exp(n;;) + log (y]ﬂ)
i=1 ij
for m;; = X;;8 + ziju; + offset;; and H(v) = 1 — exp{—exp(v)}.
Defining rj = (7j1,...,7jn,;) and
nj r
c(yjr;) =) log (y?)
P 17

where c(y;,r;) does not depend on the model parameters, we can express the above compactly in
matrix notation,

fyjlug) = exp [y} log {H(n;)} — (r; —y;) exp(n;) + ¢ (v5,15)]

where 7; is formed by stacking the row vectors 7,;. We extend the definitions of the functions H (),
log(), and exp(+) to be vector functions where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and g X g variance matrix
%, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density
fyjru)),

£j(,8, 3) = (271-)—’1/2 |2|_1/2/f(yj|uj)exp (—u;E_luj/Q) du;
()
— exp{c(y;,r;)} (2m) /2 57/ / exp {h (8, 5. u;)} du

where
h(B,%,u;) = y;» log {H(nj)} —(r; — yj)’exp(nj) — u;E_luj/Z
and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(Yj7rj7Xj7Zj)'
The integration in (2) has no closed form and thus must be approximated. mecloglog offers
four approximation methods: mean—variance adaptive Gauss—Hermite quadrature (default), mode-

curvature adaptive Gauss—Hermite quadrature, nonadaptive Gauss—Hermite quadrature, and Laplacian
approximation.

The Laplacian approximation is based on a second-order Taylor expansion of & (3, ¥, u;) about
the value of u; that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, £(3,X) = Zfil L;(B,%).

Maximization of £(3,X) is performed with respect to (3, %), where o

is a vector comprising
the unique elements of ¥. Parameter estimates are stored in e(b) as ({3, 82), with the corresponding

variance—covariance matrix stored in e (V).
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[U] 20 Estimation and postestimation commands
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Title

mecloglog postestimation — Postestimation tools for mecloglog

Description Syntax for predict Menu for predict

Options for predict Syntax for estat group Menu for estat

Remarks and examples Methods and formulas Also see
Description

The following postestimation command is of special interest after mecloglog:

Command

Description

estat group

summarize the composition of the nested groups

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce
estimates
lincom

Irtest
margins

marginsplot
nlcom

predict
predictnl

pwcompare
test
testnl

summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

cataloging estimation results

point estimates, standard errors, testing, and inference for linear
combinations of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.
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Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [zf] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [type] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description
Main
mu predicted mean; the default
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset variable in calculating predictions; relevant only
if you specified offset () when you fit the model
fixedonly prediction for the fixed portion of the model only
Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict
Main

Is

remeans, remodes, reses(); see [ME] meglm postestimation.

mu, the default, calculates the predicted mean (the probability of a positive outcome), that is, the
inverse link function applied to the linear prediction. By default, this is based on a linear predictor
that includes both the fixed effects and the random effects, and the predicted mean is conditional on
the values of the random effects. Use the fixedonly option if you want predictions that include
only the fixed portion of the model, that is, if you want random effects set to 0.

fitted, xb, stdp, pearson, deviance, anscombe, means, modes, nooffset, fixedonly; see
[ME] meglm postestimation.

By default or if the means option is specified, statistics mu, fitted, xb, stdp, pearson, deviance,
and anscombe are based on the posterior mean estimates of random effects. If the modes option
is specified, these statistics are based on the posterior mode estimates of random effects.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

Syntax for estat group

estat group

Menu for estat

Statistics > Postestimation > Reports and statistics

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
complementary log-log model with mecloglog. Here we show a short example of predicted proba-
bilities and predicted random effects; refer to [ME] meglm postestimation for additional examples.

> Example 1

In example 2 of [ME] mecloglog, we analyzed the cognitive ability (dtlm) of patients with
schizophrenia compared with their relatives and control subjects. We used a three-level complementary
log-log model with random effects at the family and subject levels. Cognitive ability was measured
as the successful completion of the “Tower of London”, a computerized task, measured at three levels
of difficulty.
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. use http://www.stata-press.com/data/r13/towerlondon

(Tower of London data)
. mecloglog dtlm difficulty i.group || family: || subject:

Fitting fixed-effects model:

(output omitted )
Mixed-effects cloglog regression Number of obs = 677
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration points = 7
Wald chi2(3) = 83.32
Log likelihood = -305.26516 Prob > chi2 = 0.0000
dtlm Coef.  Std. Err. z P>|z| [95% Conf. Intervall
difficulty -1.342844 .1501508 -8.94 0.000 -1.637135 -1.048554
group
2 -.1331007 .269389 -0.49 0.621 -.6610935 .3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411
_cons -1.6718 .2290325 -7.30 0.000 -2.120695  -1.222905
family
var (_cons) .2353453 .2924064 .0206122 2.687117
family>
subject
var (_cons) .7737687 .4260653 .2629714 2.276742

chi2(2) = 16.61

Note: LR test is conservative and provided only for reference.

LR test vs. cloglog regression: Prob > chi2 = 0.0002

We obtain predicted probabilities based on the contribution of both fixed effects and random effects

by typing

. predict pr

(predictions based on fixed effects and posterior means of random effects)
(option mu assumed)

(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You
can use the modes option to obtain predictions based on the posterior modes of random effects.

We obtain predictions of the posterior means themselves by typing

. predict re*, remeans
(calculating posterior means of random effects)
(using 7 quadrature points)

Because we have one random effect at the family level and another random effect at the subject
level, Stata saved the predicted posterior means in the variables rel and re2, respectively. If you are
not sure which prediction corresponds to which level, you can use the describe command to show
the variable labels.
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Here we list the data for family 16:

. list family subject dtlm pr rel re2 if family==16, sepby(subject)

family subject dtlm pr rel re2
208. 16 5 1 .486453  .4184933 .2760492
209. 16 5 0  .1597047  .4184933 .2760492
210. 16 5 0  .0444156  .4184933 .2760492
211. 16 34 1 .9659582 4184933 1.261488
212. 16 34 1 .5862808  .4184933 1.261488
213. 16 34 1 .205816  .4184933 1.261488
214. 16 35 0 .5571261 .4184933  -.1616545
215. 16 35 1 .1915688  .4184933 -.1616545
216. 16 35 0  .0540124  .4184933 -.1616545

We can see that the predicted random effects (rel) at the family level are the same for all members
of the family. Similarly, the predicted random effects (re2) at the individual level are constant within
each individual. Based on a cutoff of 0.5, the predicted probabilities (pr) for this family do not match
the observed outcomes (dt1lm) as well as the predicted probabilities from the logistic example; see
example 1 in [ME] melogit postestimation.

N

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log-log regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

meglm — Multilevel mixed-effects generalized linear model

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
meglm depvar fe_equation [ [ re_equation] [ || re_equation ... ] [ , oplions]

where the syntax of fe_equation is
[indepvars] [zf] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
noconstant suppress the constant term from the fixed-effects equation
exposure (varname,) include In(varname.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
asis retain perfect predictor variables
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation

56



meglm — Multilevel mixed-effects generalized linear model 57

options Description
Model
family (family) distribution of depvar; default is family(gaussian)
1link (link) link function; default varies per family
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE/Robust
vce (veetype) vcetype may be oim, robust, or cluster clustvar
Reporting
level (#) set confidence level; default is 1evel (95)
eform report exponentiated fixed-effects coefficients
irr report fixed-effects coefficients as incidence-rate ratios
or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with reference model

display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[(grhhpec)]
noestimate
dnumerical
coeflegend

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method
set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values

perform a grid search to improve starting values
do not fit the model; show starting values instead
use numerical derivative techniques

display legend instead of statistics
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vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matame) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted

Sfamily Description

gaussian Gaussian (normal); the default

L;noulli Bernoulli

binomial [# | varname} binomial; default number of binomial trials is 1

gamma gamma

Enomial [mean | %tant] negative binomial; default dispersion is mean

ordinal ordinal

poisson Poisson

link Description

identity identity

log log

logit logit

probit probit

cloglog complementary log-log

intmethod Description

mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects

models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Multilevel mixed-effects models > Generalized linear models (GLMs)

Description

meglm fits multilevel mixed-effects generalized linear models. meglm allows a variety of distributions

for the response conditional on normally distributed random effects.

Options

Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects

equation and for any or all of the random-effects equations.

exposure (varname,) specifies a variable that reflects the amount of exposure over which the depvar

events were observed for each observation; In(varname,) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset (varname,) specifies that varname, be included in the fixed-effects portion of the model with

the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations

and may produce instabilities in maximization; see [R] probit.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and

may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern (matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance (fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matame) covariance structure, (co)variance (4,j) is constrained to equal the
value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, j) and (k,) are constrained to be equal if matnameli, j| = matnamel[k,1).

family (family) specifies the distribution of depvar; family (gaussian) is the default.

link(/ink) specifies the link function; the default is the canonical link for the family () specified

except for the gamma and negative binomial families.
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If you specify both family() and link(), not all combinations make sense. You may choose
from the following combinations:

identity log logit probit cloglog

Gaussian D X
Bernoulli D X X
binomial D X X
gamma D
negative binomial D
ordinal D X X
Poisson D

D denotes the default.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] estimation options.

eform reports exponentiated fixed-effects coefficients and corresponding standard errors and confidence
intervals. This option may be specified either at estimation or upon replay.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(ﬂ)
rather than (. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay. This option is allowed for count models only.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(/3) rather than .
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or upon replay. This
option is allowed for logistic models only.

nocnsreport; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents meglm from fitting a reference linear regression model and using this model to
calculate a likelihood-ratio test comparing the mixed model with ordinary regression. This option
may also be specified upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (%fmt), pformat (% fimt), sformat (% fint), and
nolstretch; see [R] estimation options.
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Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for meglm are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meglm but are not shown in the dialog box:

startvalues (svmethod) specifies how starting values are to be computed. Starting values specified
in from() override the computed starting values.

startvalues(zero) specifies that starting values be set to 0.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model
to obtain estimates of the intercept and auxiliary parameters, and it substitutes 1 for the variances
of random effects.

startvalues(fixedonly) builds on startvalues(constantonly) by fitting a full fixed-
effects model to obtain estimates of coefficients along with intercept and auxiliary parameters, and
it continues to use 1 for the variances of random effects. This is the default behavior.

startvalues (iv) builds on startvalues(fixedonly) by using instrumental-variable methods
with generalized residuals to obtain variances of random effects.

startgrid[ (gridspec) ] performs a grid search on variance components of random effects to improve
starting values. No grid search is performed by default unless the starting values are found to be
not feasible, in which case meglm runs startgrid() to perform a “minimal” search involving
¢* likelihood evaluations, where ¢ is the number of random effects. Sometimes this resolves the
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problem. Usually, however, there is no problem and startgrid() is not run by default. There
can be benefits from running startgrid() to get better starting values even when starting values
are feasible.

startgrid() is a brute-force approach that tries various values for variances and covariances
and chooses the ones that work best. You may already be using a default form of startgrid()
without knowing it. If you see meglm displaying Grid node 1, Grid node 2, ... following Grid
node O in the iteration log, that is meglm doing a default search because the original starting values
were not feasible. The default form tries 0.1, 1, and 10 for all variances of all random effects.

startgrid (numlist) specifies values to try for variances of random effects.

startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. covspec is name[level] for variances and namel [level] *xname2 [level] for
covariances. For example, the variance of the random intercept at level id is specified as _cons [id],
and the variance of the random slope on variable week at the same level is specified as week[id].
The residual variance for the linear mixed-effects model is specified as e.depvar, where depvar
is the name of the dependent variable. The covariance between the random slope and the random
intercept above is specified as _cons[id]*week [id].

startgrid (numlist covspec) combines the two syntaxes. You may also specify startgrid()
multiple times so that you can search the different ranges for different variances and covariances.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as
modified by the above options if modifications were made), and they are to be shown using the
coeflegend style of output.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed
using numerical techniques instead of analytical formulas. By default, analytical formulas for com-
puting the gradient and Hessian are used for all integration methods except intmethod(laplace).

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me. For additional examples of mixed-effects
models for binary and binomial outcomes, see [ME] melogit, [ME] meprobit, and [ME] mecloglog.
For additional examples of mixed-effects models for ordinal responses, see [ME] meologit and
[ME] meoprobit. For additional examples of mixed-effects models for multinomial outcomes, see
[SEM] example 41g. For additional examples of mixed-effects models for count outcomes, see
[ME] mepoisson and [ME] menbreg.

Remarks are presented under the following headings:

Introduction

Two-level models for continuous responses
Two-level models for nonlinear responses
Three-level models for nonlinear responses
Crossed-effects models

Obtaining better starting values
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Introduction

meglm fits multilevel mixed-effects generalized linear models of the form

g{E(y\X,u)} = X8+ Zu, y~F (1)

where y is the n X 1 vector of responses from the distributional family F', X is an n X p design/covariate
matrix for the fixed effects 3, and Z is the n X ¢ design/covariate matrix for the random effects u.
The X3 + Zu part is called the linear predictor, and it is often denoted as n. The linear predictor
also contains the offset or exposure variable when offset() or exposure() is specified. g(-) is
called the link function and is assumed to be invertible such that

E(y|X,u) =g~ (XB+Zu) = H(n) =

For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for g(-) and F' results in a wide array of models. For instance,
if y is distributed as Gaussian (normal) and ¢(-) is the identity function, we have

E(y) = X8+ Zu, y ~ normal

or mixed-effects linear regression. If g(-) is the logit function and y is distributed as Bernoulli, we
have
logit{E(y)} =XB+ Zu, y ~ Bernoulli

or mixed-effects logistic regression. If g(-) is the natural log function and y is distributed as Poisson,

we have
ln{E(y)} = X3+ Zu, y ~ Poisson

or mixed-effects Poisson regression. In fact, some combinations of families and links are so common
that we implemented them as separate commands in terms of meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family (nbinomial) link(log)

When no family-link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, accepts
frequency and sampling weights and allows for modeling of the structure of the residual errors; see
[ME] mixed for details.

The random effects u are assumed to be distributed as multivariate normal with mean O and g X ¢
variance matrix . The random effects are not directly estimated (although they may be predicted),
but instead are characterized by the variance components, the elements of G = Var(u).
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The general forms of the design matrices X and Z allow estimation for a broad class of generalized
mixed-effects models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical
designs, etc. They also allow a flexible method of modeling within-cluster correlation. Subjects within
the same cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on a covariate, or both. The general specification of variance components also provides additional
flexibility—the random intercept and random slope could themselves be modeled as independent, or
correlated, or independent with equal variances, and so forth.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012).

The key to fitting mixed models lies in estimating the variance components, and for that there
exist many methods; see, for example, Breslow and Clayton (1993); Lin and Breslow (1996); Bates
and Pinheiro (1998); and Ng et al. (2006). meglm uses maximum likelihood (ML) to estimate model
parameters. The ML estimates are based on the usual application of likelihood theory, given the
distributional assumptions of the model.

Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups (or clusters)

9{E(y;)} = X8+ Zju; (2)

for j =1,..., M, with cluster j consisting of n; observations. The response y; comprises the rows
of y corresponding with the jth cluster, with X; defined analogously. The random effects u; can
now be thought of as M realizations of a ¢ X 1 vector that is normally distributed with mean O
and ¢ x g variance matrix . The matrix Z; is the n; x g design matrix for the jth cluster random
effects. Relating this to (1), note that

Z, 0 -~ 0 "
0 Z, - 0 1

Z-=|. 7 s ou=| |, G=1y®3z
0 0 0 Zy el

where I, is the M x M identity matrix and ® is the Kronecker product.

The mixed-model formula (2) is from Laird and Ware (1982) and offers two key advantages. First,
it makes specifications of random-effects terms easier. If the clusters are schools, you can simply
specify a random effect at the school level, as opposed to thinking of what a school-level random
effect would mean when all the data are considered as a whole (if it helps, think Kronecker products).
Second, representing a mixed-model with (2) generalizes easily to more than one set of random
effects. For example, if classes are nested within schools, then (2) can be generalized to allow random
effects at both the school and the class-within-school levels.

Two-level models for continuous responses

We begin with a simple application of (2).
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> Example 1

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weight,; = Bo + Biweek;; + u; + €

for i = 1,...,9 weeks and j = 1,...,48 pigs. The fixed portion of the model, 3y + Biweek;;,
simply states that we want one overall regression line representing the population average. The random
effect u; serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing

. use http://www.stata-press.com/data/r13/pig

(Longitudinal analysis of pig weights)

. meglm weight week || id:

Fitting fixed-effects model:

Iteration O: log likelihood = -1251.2506
Iteration 1: log likelihood = -1251.2506

Refining starting values:
Grid node O: log likelihood = -1150.6253
Fitting full model:
Iteration 0: log likelihood = -1150.6253 (not concave)
Iteration 1: log likelihood = -1036.1793
Iteration 2: log likelihood = -1017.912
Iteration 3: log likelihood = -1014.9537
4.

Iteration 4: log likelihood = -1014.9268
Iteration 5: log likelihood = -1014.9268

Mixed-effects GLM Number of obs = 432
Family: Gaussian
Link: identity
Group variable: id Number of groups = 48
Obs per group: min = 9
avg = 9.0
max = 9
Integration method: mvaghermite Integration points = 7
Wald chi2(1) = 25337.48
Log likelihood = -1014.9268 Prob > chi2 = 0.0000
weight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
week 6.209896  .0390124 159.18  0.000 6.133433 6.286359
_cons 19.35561 .5974047 32.40 0.000 18.18472 20.52651
id
var (_cons) 14.81745  3.124202 9.801687 22.39989
var (e.weight) 4.383264  .3163349 3.805112 5.049261
LR test vs. linear regression: chibar2(01) = 472.65 Prob>=chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:
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1. By typing weight week, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

2. When we added | | id:, we specified random effects at the level identified by the group variable
id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

3. The estimation log displays a set of iterations from optimizing the log likelihood. By default, these
are Newton—Raphson iterations, but other methods are available by specifying the appropriate
maximize_options; see [R] maximize.

4. The header describes the model, presents a summary of the random-effects group, reports the
integration method used to fit the model, and reports a Wald test against the null hypothesis that all
the coefficients on the independent variables in the mean equation are 0. Here the null hypothesis
is rejected at all conventional levels. You can suppress the group information with the nogroup
or the noheader option, which will suppress the rest of the header as well.

5. The estimation table reports the fixed effects, followed by the random effects, followed by the
overall error term.

a. For the fixed-effects part, we estimate Sy = 19.36 and (3, = 6.21.

b. The random-effects equation is labeled id, meaning that these are random effects at the id
(pig) level. We have only one random effect at this level, the random intercept. The variance
of the level-two errors, 03, is estimated as 14.82 with standard error 3.12.

c. The row labeled var(e.weight) displays the estimated variance of the overall error term:
/0\62 = 4.38. This is the variance of the level-one errors, that is, the residuals.

6. Finally, a likelihood-ratio test comparing the model with ordinary linear regression is provided and
is highly significant for these data. See Distribution theory for likelihood-ratio test in [ME] me for
a discussion of likelihood-ratio testing of variance components.

N

See Remarks and examples in [ME] mixed for further analysis of these data including a random-slope
model and a model with an unstructured covariance structure.

Two-level models for nonlinear responses

By specifying different family—link combinations, we can fit a variety of mixed-effects models for
nonlinear responses. Here we replicate the model from example 2 of meqrlogit.

> Example 2

Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women
sampled were from 60 districts, identified by the variable district. Each district contained either
urban or rural areas (variable urban) or both. The variable c_use is the binary response, with a value
of 1 indicating contraceptive use. Other covariates include mean-centered age and three indicator
variables recording number of children.

We fit a standard logistic regression model, amended to have a random intercept for each district
and a random slope on the indicator variable urban. We fit the model by typing
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. use http://www.stata-press.com/data/r13/bangladesh
(Bangladesh Fertility Survey, 1989)

. meglm c_use urban age child* || district: urban, family(bernoulli) link(logit)

Fitting fixed-effects model:

Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:

log
log
log
log

likelihood =

likelihood
likelihood
likelihood

Refining starting values:

Grid node O:

Fitting full model:

Iteration O:
Iteration 1
Iteration 2:
Iteration 3:
Iteration 4
Iteration 5
Iteration 6:

log

log
log
log
log
log
log
log

Mixed-effects GLM

Family:
Link:

Group variable:

likelihood

likelihood
likelihood
likelihood
likelihood
likelihood
likelihood
likelihood

Bernoul
log
distri

-1229.5485

= -1228.5268
= -1228.5263
= -1228.5263

= -1215.8592

= -1215.8592
= -1209.6285
= -1205.7903
= -1205.1337
= -1205.0034
= -1205.0025
= -1205.0025

1i
it
ct

Integration method: mvaghermite

Log likelihood = -1205.0025

(not concave)

Number of obs = 1934

Number of groups = 60
Obs per group: min = 2

avg = 32.2

max = 118
Integration points = 7
Wald chi2(5) = 97.30
Prob > chi2 = 0.0000

c_use Coef . Std. Err. z P>|z| [95% Conf. Intervall]

urban . 7143927 .1513595 4.72 0.000 .4177335 1.011052

age -.0262261 .0079656 -3.29 0.001 -.0418384 -.0106138

childl 1.128973 .1599347 7.06 0.000 .815507 1.442439

child2 1.363165 .1761804 7.74 0.000 1.017857 1.708472

child3 1.352238 .1815608 7.45 0.000 .9963853 1.708091

_cons -1.698137 .1505019 -11.28 0.000 -1.993115 -1.403159
district

var (urban) .2741013 .2131525 .059701 1.258463

var (_cons) .2390807 .0857012 .1184191 .4826891

LR test vs. logistic regression: chi2(2) = 47.05 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because we did not specify a covariance structure for the random effects (1, uo;)’, meglm used the
default independent structure:

. /\2
with o

E:Var[

U1y
qu

-

L = 0.27 and 52, = 0.24. You can request a different covariance structure by specifying the

2
Oul g
0 oy

|

covariance() option. See Two-level models in [ME] meqrlogit for further analysis of these data,
and see [ME] me and [ME] mixed for further examples of covariance structures.

4
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Three-level models for nonlinear responses

Two-level models extend naturally to models with three or more levels with nested random effects.
Here we replicate the model from example 2 of [ME] meologit.

> Example 3

We use the data from the Television, School, and Family Smoking Prevention and Cessation
Project (Flay et al. 1988; Rabe-Hesketh and Skrondal 2012, chap. 11), where schools were randomly
assigned into one of four groups defined by two treatment variables. Students within each school are
nested in classes, and classes are nested in schools. The dependent variable is the tobacco and health
knowledge (THK) scale score collapsed into four ordered categories. We regress the outcome on the
treatment variables, social resistance classroom curriculum and TV intervention, and their interaction
and control for the pretreatment score.

. use http://www.stata-press.com/data/r13/tvsfpors

. meglm thk prethk cc##tv || school: || class:, family(ordinal) link(logit)
Fitting fixed-effects model:

Iteration O: log likelihood = -2212.775

Iteration 1: log likelihood = -2125.509

Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032

Refining starting values:
Grid node O: log likelihood = -2152.1514
Fitting full model:

Iteration 0: log likelihood = -2152.1514 (not concave)
Iteration 1: log likelihood = -2125.9213 (not concave)
Iteration 2: log likelihood = -2120.1861
Iteration 3: log likelihood = -2115.6177
Iteration 4: log likelihood = -2114.5896
Iteration 5: log likelihood = -2114.5881
Iteration 6: log likelihood = -2114.5881

Mixed-effects GLM Number of obs = 1600
Family: ordinal
Link: logit
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
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Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000
thk Coef. Std. Err. z P>|z| [95% Conf. Intervall
prethk .4085273 .039616 10.31  0.000 .3308814 .4861731
1l.cc . 8844369 .2099124 4.21  0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15  0.249 -.1651614 .6380575

ccH#tv
11 -.3717699 .2958887 -1.26  0.209 -.951701 .2081612
/cutl -.0959459 .1688988 -0.57 0.570 -.4269815 .2350896
/cut2 1.177478 .1704946 6.91  0.000 .8433151 1.511642
/cut3 2.383672 .1786736 13.34  0.000 2.033478 2.733865

school

var (_cons) .0448735 .0425387 .0069997 .2876749

school>class
var (_cons) .1482157 .0637521 .063792 .3443674
LR test vs. ologit regression: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meglm
assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

We refer you to example 2 of [ME] meologit and example 1 of [ME] meologit postestimation for
a substantive interpretation of the results.

4

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed models contain nested levels of random effects. In this section, we consider a
crossed-effects model, that is, a mixed-effects model in which the levels of random effects are not
nested; see [ME] me for more information on crossed-effects models.
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> Example 4

We use the salamander cross-breeding data from Karim and Zeger (1992) as analyzed in Rabe-
Hesketh and Skrondal (2012, chap. 16.10). The salamanders come from two populations—whiteside
and roughbutt—and are labeled whiteside males (wsm), whiteside females (wsf), roughbutt males
(rbm), and roughbutt females (rbf). Male identifiers are recorded in the variable male, and female
identifiers are recorded in the variable female. The salamanders were divided into groups such that
each group contained 60 male—female pairs, with each salamander having three potential partners
from the same population and three potential partners from the other population. The outcome (y) is
coded 1 if there was a successful mating and is coded O otherwise; see the references for a detailed
description of the mating experiment.

We fit a crossed-effects logistic regression for successful mating, where each male has the same
value of his random intercept across all females, and each female has the same value of her random
intercept across all males.

To fit a crossed-effects model in Stata, we use the _all: R.varname syntax. We treat the entire
dataset as one super cluster, denoted —_all, and we nest each gender within the super cluster by using
the R.varname notation. R.male requests a random intercept for each level of male and imposes an
identity covariance structure on the random effects; that is, the variances of the random intercepts
are restricted to be equal for all male salamanders. R.female accomplishes the same for the female
salamanders. In Stata, we type
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. use http://www.stata-press.com/data/r13/salamander

. meglm y wsm##wsf || _all: R.male || _all: R.female, family(bernoulli)
> link(logit) or

note: crossed random effects model specified; option intmethod(laplace)
implied

Fitting fixed-effects model:

Iteration O: log likelihood = -223.13998
Iteration 1: log likelihood = -222.78752
Iteration 2: log likelihood = -222.78735
Iteration 3: log likelihood = -222.78735

Refining starting values:

Grid node O: log likelihood = -211.58149
Fitting full model:

Iteration O: log likelihood = -211.58149
Iteration 1: log likelihood = -209.32221
Iteration 2: log likelihood = -209.31084
Iteration 3: log likelihood = -209.27663
4.

Iteration 4: log likelihood = -209.27659
Iteration 5: log likelihood = -209.27659 (backed up)

Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: logit
Group variable: _all Number of groups = 1
Obs per group: min = 360
avg = 360.0
max = 360
Integration method: laplace
Wald chi2(3) = 37.54
Log likelihood = -209.27659 Prob > chi2 = 0.0000
y | 0dds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
1.wsm .4956747 .2146564 -1.62 0.105 .2121174 1.15829
1.wsf .0548105 .0300131 -5.30 0.000 .0187397 .1603114
wsm#wst
11 36.17082 22.77918 5.70 0.000 10.52689 124.2844
_cons 2.740043 .9768565 2.83 0.005 1.362368 5.510873
_all>male
var (_cons) 1.04091 .511001 .3976885 2.724476
_all>female
var (_cons) 1.174448 .5420751 .4752865 2.902098
LR test vs. logistic regression: chi2(2) = 27.02 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.

Because we specified a crossed-effects model, meglm defaulted to the method of Laplacian approxi-
mation to calculate the likelihood; see Computation time and the Laplacian approximation in [ME] me
for a discussion of computational complexity of mixed-effects models, and see Methods and formulas
below for the formulas used by the Laplacian approximation method.

The estimates of the random intercepts suggest that the heterogeneity among the female salamanders,
1.17, is larger than the heterogeneity among the male salamanders, 1.04.
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Setting both random intercepts to 0, the odds of successful mating for a roughbutt male—female
pair are given by the estimate of _cons, 2.74. Rabe-Hesketh and Skrondal (2012, chap. 16.10) show
how to calculate the odds ratios for the other three salamander pairings.

4

The R.varname notation is equivalent to giving a list of overparameterized (none dropped)
indicator variables for use in a random-effects specification. When you specify R.varname, meglm
handles the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R .varname implies noconstant. You can include factor variables in
the fixed-effects specification by using standard methods; see [U] 11.4.3 Factor variables. However,
random-effects equations support only the R.varname factor specification. For more complex factor
specifications (such as interactions) in random-effects equations, use generate to form the variables
manually.

O Technical note
We fit the salamander model by using

. meglm y wsm##wsf || _all: R.male || _all: R.female ...

as a direct way to demonstrate the R. notation. However, we can technically treat female salamanders
as nested within the _all group, yielding the equivalent way to fit the model:

. meglm y wsm##wsf || _all: R.male || female:

We leave it to you to verify that both produce identical results. As we note in example 8 of [ME] me,
the latter specification, organized at the cluster (female) level with random-effects dimension one (a
random intercept) is, in general, much more computationally efficient.

a

Obtaining better starting values

Given the flexibility of mixed-effects models, you will find that some models “fail to converge”
when used with your data; see Diagnosing convergence problems in [ME] me for details. What we
say below applies regardless of how the convergence problem revealed itself. You might have seen
the error message “initial values not feasible” or some other error message, or you might have an
infinite iteration log.

meglm provides two options to help you obtain better starting values: startvalues() and
startgrid().

startvalues (svmethod) allows you to specify one of four starting-value calculation methods:
zero, constantonly, fixedonly, or iv. By default, meglm uses startvalues(fixedonly).
Evidently, that did not work for you. Try the other methods, starting with startvalues(iv):

. meglm ..., ... startvalues(iv)

If that does not solve the problem, proceed through the others.

By the way, if you have starting values for some parameters but not others—perhaps you fit a
simplified model to get them—you can combine the options startvalues() and from():
. meglm ..., ...
. matrix b = e(b)
. meglm ..., ... from(b) startvalues(iv) // full model

// simplified model
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The other special option meglm provides is startgrid(), which can be used with or without
startvalues (). startgrid() is a brute-force approach that tries various values for variances and
covariances and chooses the ones that work best.

1. You may already be using a default form of startgrid() without knowing it. If you see
meglm displaying Grid node 1, Grid node 2, ... following Grid node O in the iteration log,
that is meglm doing a default search because the original starting values were not feasible.

The default form tries 0.1, 1, and 10 for all variances of all random effects and, if applicable,
for the residual variance.

2. startgrid(numlist) specifies values to try for variances of random effects.

3. startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. Variances and covariances are specified in the usual way.
startgrid(_cons[id] x[id] _cons([id]*x[id]) specifies that 0.1, 1, and 10 be tried
for each member of the list.

4. startgrid(numlist covspec) combines the two syntaxes. You can specify startgrid()
multiple times so that you can search the different ranges for different variances and
covariances.

Our advice to you is the following:

1. If you receive an iteration log and it does not contain Grid node 1, Grid node 2, ..., then
specify startgrid(.1 1 10). Do that whether the iteration log was infinite or ended with
some other error. In this case, we know that meglm did not run startgrid() on its own
because it did not report Grid node 1, Grid node 2, etc. Your problem is poor starting values,
not infeasible ones.

A synonym for startgrid(.1 1 10) is just startgrid without parentheses.

Be careful, however, if you have many random effects. Specifying startgrid() could run
a long time because it runs all possible combinations. If you have 10 random effects, that
means 103 = 1,000 likelihood evaluations.

If you have many random effects, rerun your difficult meglm command including option
iterate(#) and look at the results. Identify the problematic variances and search across
them only. Do not just look for variances going to 0. Variances getting really big can be
a problem, too, and even reasonable values can be a problem. Use your knowledge and
intuition about the model.

Perhaps you will try to fit your model by specifying startgrid(.11 10 _cons[id] x[id]
_cons [id]*x[id]).

Values 0.1, 1, and 10 are the default. Equivalent to specifying
startgrid(.1 1 10 _cons[id] x[id] _cons[id]*x[id]) is
startgrid(_cons[id] x[id] _cons[id]*x[id]).

Look at covariances as well as variances. If you expect a covariance to be negative but it is
positive, then try negative starting values for the covariance by specifying startgrid(-.1
-1 -10 _cons[id]*x[id]).

Remember that you can specify startgrid () multiple times. Thus you might specify both
startgrid(_cons[id] x[id]) and startgrid(-.1 -1 -10 _cons[id]*x[id]).
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2. If you receive the message “initial values not feasible”, you know that meglm already tried
the default startgrid().

The default startgrid() only tried the values 0.1, 1, and 10, and only tried them on the
variances of random effects. You may need to try different values or try the same values on
covariances or variances of errors of observed endogenous variables.

We suggest you first rerun the model causing difficulty and include the noestimate option.
If, looking at the results, you have an idea of which variance or covariance is a problem, or if
you have few variances and covariances, we would recommend running startgrid() first.
On the other hand, if you have no idea as to which variance or covariance is the problem
and you have many of them, you will be better off if you first simplify the model. After
doing that, if your simplified model does not include all the variances and covariances, you
can specify a combination of from() and startgrid().

Stored results

meglm stores the following in e ():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e(b)
e(k_eq_model) number of equations in overall model test
e(k_cat) number of categories (with ordinal outcomes)
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(chi2) x?
e(p) significance
e(1l_c) log likelihood, comparison model
e(chi2_c) x?, comparison model
e(df_c) degrees of freedom, comparison model
e(p-c) significance, comparison model
e(N_clust) number of clusters
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code

e(converged) 1 if converged, O otherwise



e(binomial)
e(dispersion)

e(intmethod) integration method

e(n_quad) number of integration points
e(chi2type) Wald; type of model x?

e(vce) veetype specified in vce()
e(vcetype) title used to label Std. Err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method

e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum

e(datasignaturevars)

e(properties)
e(estat_cmd)

binomial number of trials (with binomial models)
mean or constant (with negative binomial models)

variables used in calculation of checksum
bV
program used to implement estat
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Macros

e(cmd) meglm

e(cmdline) command as typed

e(depvar) name of dependent variable

e(covariates) list of covariates

e(ivars) grouping variables

e (model) name of marginal model

e(title) title in estimation output

e(link) link

e(family) family

e(clustvar) name of cluster variable

e(offset) offset

e(predict) program used to implement predict
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(cat) category values (with ordinal outcomes)
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g_min) group-size minimums
e(g_avg) group-size averages
e(g_max) group-size maximums
e(V) variance—covariance matrix of the estimator
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas

Methods and formulas are presented under the following headings:

Introduction

Gauss—Hermite quadrature
Adaptive Gauss—Hermite quadrature
Laplacian approximation
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Introduction

Without a loss of generality, consider a two-level generalized mixed-effects model
E(y;|Xj, ) =g (X;8+2Z;u;),  y~F
for j = 1,..., M clusters, with the jth cluster consisting of n; observations, where, for the jth
cluster, y; is the n; X 1 response vector, X; is the n; x p matrix of fixed predictors, Z; is the
nj X ¢ matrix of random predictors, u; is the ¢ x 1 vector of random effects, 3 is the p x 1 vector of
regression coefficients on the fixed predictors, and we use ¥ to denote the unknown ¢ X ¢ variance
matrix of the random effects. For simplicity, we consider a model with no auxiliary parameters.

Let m; be the linear predictor, n; = X8 + Zju;, that also includes the offset or the exposure
variable when offset () or exposure() is specified. Let y;; and 7;; be the ith individual elements
of yjand ;, i =1,...,n;. Let f(yijmi;) be the conditional density function for the response at
observation 2. Because the observations are assumed to be conditionally independent, we can overload
the definition of f(-) with vector inputs to mean

n;

log f( Y |77] Z log f( Yij |77’Lj)

The random effects u; are assumed to be multivariate normal with mean O and variance X. The
likelihood function for cluster j is given by

_ _ 1 _
£,(0:3) = 20 8 [ sty e (~gum ) du,
' (3)

_ _ 1 _
= (27) q/2‘2| 1/2/gte exp {logf(yj|nj)2u;.2 1uj} du;

where R denotes the set of values on the real line and R is the analog in g-dimensional space.

The multivariate integral in (3) is generally not tractable, so we must use numerical methods to
approximate the integral. We can use a change-of-variables technique to transform this multivariate
integral into a set of nested univariate integrals. Each univariate integral can then be evaluated
using a form of Gaussian quadrature. meglm supports three types of Gauss—Hermite quadratures:
mean—variance adaptive Gauss—Hermite quadrature (MVAGH), mode-curvature adaptive Gauss—Hermite
quadrature (MCAGH), and nonadaptive Gauss—Hermite quadrature (GHQ). meglm also offers the
Laplacian-approximation method, which is used as a default method for crossed mixed-effects models.
Below we describe the four methods. The methods described below are based on Skrondal and
Rabe-Hesketh (2004, chap. 6.3).

Gauss—Hermite quadrature
Let u; = Lv;, where v; is a ¢ x 1 random vector whose elements are independently standard

normal variables and L is the Cholesky decomposition of ¥, ¥ = LL’. Then n; = X;8+Z;Lvj,
and the likelihood in (3) becomes

- 1
L;(8,%) = (2m)"V/? /ﬁ exp {log f(yjln;) — 2V}Vj} v
1 q
(2m) q/2/ / exp {10gf yj|7]j izv k} dvji,...,dvjq
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Consider a g-dimensional quadrature grid containing r quadrature points in each dimension. Let
ax = (ag,,...,ar,)’ be a point on this grid, and let wyx = (wg,,...,ws,) be the vector of
corresponding weights. The GHQ approximation to the likelihood is

L5NY(B, 2 Z Z [eXp {log f(y;lmju) } Hwk 1

k=1 ko=1

Z Z [eXp{Zlogf vii nigie) }pl:[lwkp]

ki=1  kg=1

where

'I]jk = Xjﬁ + ZjLak

and 7k is the ith element of 7.

Adaptive Gauss—Hermite quadrature

This section sets the stage for MVAGH quadrature and MCAGH quadrature.

Let’s reconsider the likelihood in (4). We use ¢(v;) to denote a multivariate standard normal with
mean 0. and variance I, and we use ¢(vj|uj, A;) to denote a multivariate normal with mean i
and variance A;.

For fixed model parameters, the posterior density for v; is proportional to

o(vi) f(y;iln;)
where
1’]J = Xj,@ + ZjLVj
It is reasonable to assume that this posterior density can be approximated by a multivariate normal

density with mean vector p; and variance matrix A;. Instead of using the prior density of v; as the
weighting distribution in the integral, we can use our approximation for the posterior density,

f(yjlny)o(v;)

L;(8,%) = e OV, A) d(vjilp;, Aj) dv;

Then the MVAGH approximation to the likelihood is

LMVAGH (g 5, Z Z [exp {log f(ylm.) }H

ki=1 kq=1

where

njk = Xjﬂ + ZjLa;k
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and a;*k and w;kp are the abscissas and weights after an orthogonalizing transformation of a;j and
wjg,,, respectively, which eliminates posterior covariances between the random effects.

Estimates of p; and A; are computed using one of two different methods. The mean fp; and
variance A ; are computed iteratively by updating the posterior moments with the MVAGH approximation,
starting with a 0 mean vector and identity variance matrix. For the MCAGH approximation, ft; and A
are computed by optimizing the integrand with respect to v, where p; is the optimal value and A;
is the curvature at ;.

Laplacian approximation

Consider the likelihood in (3) and denote the argument in the exponential function by

1 _
h(ﬁ,Z,uj) = log f(yj|Xj,6—|— Zjllj) — 51132 111j

The Laplacian approximation is based on a second-order Taylor expansion of h(3, %, u;) about the
value of u; that maximizes it. The first and second partial derivatives with respect to u; are

Oh(B, 3, u;) dlog f(yjlm;) _
"B.2.w) = N i) Z O I =1y
h (/67 >uJ) 3llj j 877‘7 u;
2 ‘ 921 |
W83y = LMBE W) g, Tlo8 Vi),

du;ou Y Oom,;0m;

The maximizer of h(8, X, u;) is U; such that h’'(3,X,u;) = 0. The integral in (3) is proportional
to the posterior density of u; given the data, so U, is also the posterior mode.

Let

p; = X;B+ Z;u;

S, — dlog f(y;Ip;)

1 — =<
apj

08, 0%log f(y;|p;)

Sy = = P
op) Ip; 0D

H; = 1n"(8,%,0;) = Z;S,Z; — 3!

then

0="1'(8%,1;) =28 -2 'y,
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Given the above, the second-order Taylor approximation takes the form

-~

N 1 I
h(B,Z, ;) ~ h(B,%,1;) + 5 (u; — u;) Hj(u; — 1)

because the first-order derivative term is 0. The integral is approximated by

/ exp{h(B, 3, ;) } du; ~ (2m)" |=H, |~/ exp{h(8, 2, 4;)}
Ra
Thus the Laplacian approximated log likelihood is

a 1 1 .
log £7(8, %) = —3 log 8| — 7 log|—H,| + h(8, 2. 1,)

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, £(3,X) = Z]M:1 L;(B,%).

2

Maximization of £(3,X) is performed with respect to (3, o), where o2 is a vector comprising

the unique elements of ¥. Parameter estimates are stored in e(b) as (3, 32), with the corresponding
variance—covariance matrix stored in e(V). In the presence of auxiliary parameters, their estimates
and standard errors are included in e(b) and e (V), respectively.
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Description

The following postestimation command is of special interest after meglm:

Command

Description

estat group

summarize the composition of the nested groups

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized
predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.

81
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Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [zf] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [type] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description

Main
mu mean response; the default
pr synonym for mu for ordinal and binary response models
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
residuals raw residuals; available only with the Gaussian family
pearson Pearson residuals
&iance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
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options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset or exposure variable in calculating predictions; relevant only
if you specified offset () or exposure() when you fit the model
fixedonly prediction for the fixed portion of the model only

outcome (outcome) outcome category for predicted probabilities for ordinal models

Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance(#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

For ordinal outcomes, you specify one or k new variables in newvarlist with mu and pr, where k is the number of
outcomes. If you do not specify outcome(), those options assume outcome (#1).

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

remeans calculates posterior means of the random effects, also known as empirical Bayes means.
You must specify g new variables, where ¢ is the number of random-effects terms in the model.
However, it is much easier to just specify stub* and let Stata name the variables stub1, stub2, ...,
stubq for you.

remodes calculates posterior modes of the random effects, also known as empirical Bayes modes.
You must specify g new variables, where ¢ is the number of random-effects terms in the model.
However, it is much easier to just specify stub* and let Stata name the variables stub1, stub2, ...,
stubq for you.

reses (stubx | newvarlist) calculates standard errors of the empirical Bayes estimators and stores the
result in newvarlist. This option requires the remeans or the remodes option. You must specify g
new variables, where q is the number of random-effects terms in the model. However, it is much
easier to just specify stub* and let Stata name the variables stub1, stub2, ..., stubq for you.

The remeans, remodes, and reses() options often generate multiple new variables at once.
When this occurs, the random effects (and standard errors) contained in the generated variables
correspond to the order in which the variance components are listed in the output of meglm. Still,
examining the variable labels of the generated variables (by using the describe command, for
instance) can be useful in deciphering which variables correspond to which terms in the model.

mu, the default, calculates the predicted mean, that is, the inverse link function applied to the linear
prediction. By default, this is based on a linear predictor that includes both the fixed effects and
the random effects, and the predicted mean is conditional on the values of the random effects. Use
the fixedonly option if you want predictions that include only the fixed portion of the model,
that is, if you want random effects set to 0.
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pr calculates predicted probabilities and is a synonym for mu. This option is available only for ordinal
and binary response models.

fitted calculates the fitted linear prediction. By default, the fitted predictor includes both the fixed
effects and the random effects. Use the fixedonly option if you want predictions that include
only the fixed portion of the model, that is, if you want random effects set to 0.

xb calculates the linear prediction x/3 based on the estimated fixed effects (coefficients) in the model.
This is equivalent to fixing all random effects in the model to their theoretical (prior) mean value
of 0.

stdp calculates the standard error of the fixed-effects linear predictor x3.

residuals calculates raw residuals, that is, responses minus the fitted values. This option is available
only for the Gaussian family.

pearson calculates Pearson residuals. Pearson residuals that are large in absolute value may indicate
a lack of fit. By default, residuals include both the fixed portion and the random portion of the
model. The fixedonly option modifies the calculation to include the fixed portion only.

deviance calculates deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) as having the best properties for examining the goodness of fit of a GLM. They
are approximately normally distributed if the model is correctly specified. They may be plotted
against the fitted values or against a covariate to inspect the model fit. By default, residuals include
both the fixed portion and the random portion of the model. The fixedonly option modifies the
calculation to include the fixed portion only.

anscombe calculates Anscombe residuals, which are designed to closely follow a normal distribution.
By default, residuals include both the fixed portion and the random portion of the model. The
fixedonly option modifies the calculation to include the fixed portion only.

means specifies that posterior means be used as the estimates of the random effects for any statistic
involving random effects. means is the default.

modes specifies that posterior modes be used as the estimates of the random effects for any statistic
involving random effects.

nooffset is relevant only if you specified offset(varname,) or exposure(varname.) with
meglm. It modifies the calculations made by predict so that they ignore the offset or the
exposure variable; the linear prediction is treated as X3 + Zu rather than X + Zu + offset, or
X8 + Zu + In(exposure), whichever is relevant.

fixedonly modifies predictions to include only the fixed portion of the model, equivalent to setting
all random effects equal to 0.

outcome (outcome) specifies the outcome for which the predicted probabilities are to be calculated.
outcome () should contain either one value of the dependent variable or one of #1, #2, ..., with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

Integration

intpoints (#) specifies the number of quadrature points used to compute the empirical Bayes means;
the default is the value from estimation.

iterate (#) specifies the maximum number of iterations when computing statistics involving empirical
Bayes estimators; the default is the value from estimation.

tolerance (#) specifies convergence tolerance when computing statistics involving empirical Bayes
estimators; the default is the value from estimation.
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Syntax for estat group

estat group

Menu for estat

Statistics > Postestimation > Reports and statistics

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
model using meglm. For the most part, calculation centers around obtaining predictions of the random
effects. Random effects are not estimated when the model is fit but instead need to be predicted after
estimation.

> Example 1

In example 2 of [ME] meglm, we modeled the probability of contraceptive use among Bangladeshi
women by fitting a mixed-effects logistic regression model. To facilitate a more direct comparison
between urban and rural women, we express rural status in terms of urban status and eliminate the
constant from both the fixed-effects part and the random-effects part.
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. use http://www.stata-press.com/data/r13/bangladesh
(Bangladesh Fertility Survey, 1989)

. generate byte rural = 1 - urban

. meglm c_use rural urban age child*, nocons || district: rural urban, nocons
> family(bernoulli) link(logit)

Fitting fixed-effects model:

Iteration O: log likelihood = -1229.5485
Iteration 1: log likelihood = -1228.5268
Iteration 2: log likelihood = -1228.5263
Iteration 3: log likelihood = -1228.5263

Refining starting values:

Grid node O: log likelihood = -1208.3922

Fitting full model:

Iteration 0: log likelihood = -1208.3922 (not concave)

Iteration log likelihood = -1203.6498 (not concave)
Iteration log likelihood = -1200.6662
Iteration log likelihood = -1199.9939

Iteration log likelihood = -1199.3272
Iteration log likelihood = -1199.3268

1
2
3:
Iteration 4: log likelihood = -1199.3784
5.
6:
Iteration 7: log likelihood = -1199.3268

Mixed-effects GLM Number of obs = 1934
Family: Bernoulli
Link: logit
Group variable: district Number of groups = 60
Obs per group: min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration points = 7
Wald chi2(6) = 120.59
Log likelihood = -1199.3268 Prob > chi2 = 0.0000
(1) [c_usel_cons = 0
c_use Coef . Std. Err. z P>|z| [95% Conf. Intervall
rural -1.712549 .1603689 -10.68  0.000 -2.026866  -1.398232
urban -.9004495 .1674683 -5.38 0.000 -1.228681  -.5722176
age -.0264472 .0080196 -3.30 0.001 -.0421652 -.0107291
childl 1.132291 .1603052 7.06 0.000 .8180983 1.446483
child2 1.358692 .1769369 7.68 0.000 1.011902 1.705482
child3 1.354788 .1827459 7.41 0.000 .9966122 1.712963
_cons 0 (omitted)
district
var (rural) .3882825 .1284858 .2029918 . 7427064
var (urban) 239777 .1403374 .0761401 . 7550947
LR test vs. logistic regression: chi2(2) = 58.40 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We used the binary variables, rural and urban, instead of the factor notation i.urban because,
although supported in the fixed-effects specification of the model, such notation is not supported in
random-effects specifications.

This particular model allows for district random effects that are specific to the rural and urban
areas of that district and that can be interpreted as such. We can obtain predictions of posterior means
of the random effects and their standard errors by typing
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. predict re_rural re_urban, remeans reses(se_rural se_urban)
(calculating posterior means of random effects)
(using 7 quadrature points)

The order in which we specified the variables to be generated corresponds to the order in which the
variance components are listed in meglm output. If in doubt, a simple describe will show how these
newly generated variables are labeled just to be sure.

Having generated estimated random effects and standard errors, we can now list them for the first
10 districts:
. by district, sort: generate tag = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tag,

> sep(0)
district re_rural se_rural re_urban se_urban
1. 1 -.9523374 .316291 -.5619418 .2329456
118. 2 -.0425217 .3819309 2.73e-18 .4896702
138. 3 -1.25e-16 .6231232 .2229486 .4658747
140. 4 -.2703357 .3980832 .574464 .3962131
170. 5 .0691029 .3101591 .0074569 .4650451
209. 6 -.3939819 .2759802 .2622263 4177785
274. 7 -.1904756 .4043461 4.60e-18 .4896702
292. 8 .0382993 .3177392 .2250237 .4654329
329. 9 -.3715211 .3919996 .0628076 .453568
352. 10 -.5624707 .4763545 9.03e-20 .4896702

The estimated standard errors are conditional on the values of the estimated model parameters:
3 and the components of X. Their interpretation is therefore not one of standard sample-to-sample
variability but instead one that does not incorporate uncertainty in the estimated model parameters;
see Methods and formulas. That stated, conditional standard errors can still be used as a measure of
relative precision, provided that you keep this caveat in mind.

You can also obtain predictions of posterior modes and compare them with the posterior means:

. predict mod_rural mod_urban, remodes
(calculating posterior modes of random effects)

. list district re_rural mod_rural re_urban mod_urban if district <= 10 & tag,

> sep(0)
district re_rural mod_rural re_urban mod_urban
1. 1 -.9523374  -.9295366 -.5619418 -.5584528
118. 2 -.0425217 -.0306312 2.73e-18 0
138. 3 -1.25e-16 0 .2229486 .2223551
140. 4 -.2703357 -.2529507 .574464 .5644512
170. 5 .0691029 .0789803 .0074569 .0077525
209. 6 -.3939819 -.3803784 .2622263 .2595116
274. 7 -.1904756 -.1737696 4.60e-18 0
292. 8 .0382993 .0488528 .2250237 .2244676
329. 9 -.3715211 -.3540084 .0628076 .0605462
352. 10 -.5624707 -.535444 9.03e-20 0

The two set of predictions are fairly close.

Because not all districts contain both urban and rural areas, some of the posterior modes are 0 and
some of the posterior means are practically 0. A closer examination of the data reveals that district
3 has no rural areas, and districts 2, 7, and 10 have no urban areas.
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Had we imposed an unstructured covariance structure in our model, the estimated posterior modes
and posterior means in the cases in question would not be exactly 0 because of the correlation between
urban and rural effects. For instance, if a district has no urban areas, it can still yield a nonzero
(albeit small) random-effects estimate for a nonexistent urban area because of the correlation with its
rural counterpart; see example 1 of [ME] meqrlogit postestimation for details.

N

> Example 2

Continuing with the model from example 1, we can obtain predicted probabilities, and unless
we specify the fixedonly option, these predictions will incorporate the estimated subject-specific
random effects ;.

. predict pr, pr
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

The predicted probabilities for observation % in cluster j are obtained by applying the inverse link
function to the linear predictor, p;; = g~ (xij,@ +2;;U;); see Methods and formulas for details. By
default, the calculation uses posterior means for u; unless you specify the modes option, in which
case the calculation uses posterior modes for 1:1j.

. predict prm, pr modes

(predictions based on fixed effects and posterior modes of random effects)

We can list the two sets of predicted probabilities together with the actual outcome for some
district, let’s say district 38:

. list c_use pr prm if district == 38
c_use pr prm
1228. yes .5783408 .5780864
1229. no .5326623 .5324027
1230. yes .6411679 .6409279
1231. yes .5326623 .5324027
1232. yes .5718783 .5716228
1233. no .3447686 .344533
1234. no .4507973 .4505391
1235. no .1940524 .1976133
1236. no .2846738 .2893007
1237. no .1264883 .1290078
1238. no .206763 .2104961
1239. no .202459 .2061346
1240. no .206763 .2104961
1241. no .1179788 .1203522

The two sets of predicted probabilities are fairly close.

For mixed-effects models with many levels or many random effects, the calculation of the posterior
means of random effects or any quantities that are based on the posterior means of random effects
may take a long time. This is because we must resort to numerical integration to obtain the posterior
means. In contrast, the calculation of the posterior modes of random effects is usually orders of
magnitude faster because there is no numerical integration involved. For this reason, empirical modes
are often used in practice as an approximation to empirical means. Note that for linear mixed-effects
models, the two predictors are the same.
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We can compare the observed values with the predicted values by constructing a classification table.
Defining success as y;; = 1 if p;; > 0.5 and defining ¥;; = O otherwise, we obtain the following

table.
. gen p_use = pr > .5
. label var p_use "Predicted outcome"
. tab2 c_use p_use, row
-> tabulation of c_use by p_use
Key
frequency
row percentage
Use
contracept Predicted outcome
ion 0 1 Total
no 991 184 1,175
84.34 15.66 100.00
yes 423 336 759
55.73 44.27 100.00
Total 1,414 520 1,934
73.11 26.89 100.00

The model correctly classified 84% of women who did not use contraceptives but only 44% of
women who did. In the next example, we will look at some residual diagnostics.

N

Q Technical note

Out-of-sample predictions are permitted after meglm, but if these predictions involve estimated
random effects, the integrity of the estimation data must be preserved. If the estimation data have
changed since the model was fit, predict will be unable to obtain predicted random effects that
are appropriate for the fitted model and will give an error. Thus to obtain out-of-sample predictions
that contain random-effects terms, be sure that the data for these predictions are in observations that
augment the estimation data.

a

> Example 3

Continuing our discussion from example 2, here we look at residual diagnostics. meglm offers
three kinds of predicted residuals for nonlinear responses—Pearson, Anscombe, and deviance. Of the
three, Anscombe residuals are designed to be approximately normally distributed; thus we can check
for outliers by plotting Anscombe residuals against observation numbers and seeing which residuals
are greater than 2 in absolute value.
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. predict anscombe, anscombe
(predictions based on fixed effects and posterior means of random effects)

. genn=_n
. label var n "observation number"

. twoway (scatter anscombe n if c_use) (scatter anscombe n if !c_use),
> yline(-2 2) legend(off) text(2.5 1400 "contraceptive use")
> text(-.1 500 "no contraceptive use")

° contraceptive use [ Y

Anscombe residuals

0 500 1000 1500 2000
observation number

There seem to be some outliers among residuals that identify women who use contraceptives. We
could examine the observations corresponding to the outliers, or we could try fitting a model with
perhaps a different covariance structure, which we leave as an exercise.

N

> Example 4

In example 3 of [ME] meglm, we estimated the effects of two treatments on the tobacco and health
knowledge (THK) scale score of students in 28 schools. The dependent variable was collapsed into
four ordered categories, and we fit a three-level ordinal logistic regression.
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. use http://www.stata-press.com/data/r13/tvsfpors, clear
. meologit thk prethk i.cc##i.tv || school: || class:
Fitting fixed-effects model:

Iteration O: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509
Iteration 2: log likelihood = -2125.1034

Iteration 3: log likelihood = -2125.1032
Refining starting values:
Grid node O: log likelihood = -2152.1514
Fitting full model:

(output omitted )

Mixed-effects ologit regression Number of obs = 1600
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000
thk Coef . Std. Err. z P>|z| [95% Conf. Intervall
prethk .4085273 .039616 10.31  0.000 .3308814 .4861731
1l.cc .8844369 .2099124 4.21  0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575
cc#tv
11 -.3717699 .2958887 -1.26  0.209 -.951701 .2081612
/cutl -.0959459 .1688988 -0.57  0.570 -.4269815 .2350896
/cut2 1.177478 .1704946 6.91 0.000 .8433151 1.511642
/cut3 2.383672 .1786736 13.34 0.000 2.033478 2.733865
school
var (_cons) .0448735 .0425387 .0069997 .2876749
school>class
var (_cons) .1482157 .0637521 .063792 .3443674
LR test vs. ologit regression: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Not surprisingly, the level of knowledge before the intervention is a good predictor of the level of
knowledge after the intervention. The social resistance classroom curriculum is effective in raising
the knowledge score, but the TV intervention and the interaction term are not.

We can rank schools by their institutional effectiveness by plotting the random effects at the school
level.
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. predict re_school re_class, remeans reses(se_school se_class)
(calculating posterior means of random effects)
(using 7 quadrature points)
. generate lower = re_school - 1.96*se_school
. generate upper = re_school + 1.96*se_school
. egen tag = tag(school)
. gsort +re_school -tag
. generate rank = sum(tag)
. generate labpos = re_school + 1.96*se_school + .1
. twoway (rcap lower upper rank) (scatter re_school rank)
> (scatter labpos rank, mlabel(school) msymbol(none) mlabpos(0)),

> xtitle(rank) ytitle(predicted posterior mean) legend(off)
> xscale(range(0 28)) xlabel(1/28) ysize(2)

407415
Y o 1106403411508
> 4049340019454
197_ 414
5412402197

513 199 515
507 505
o 509°
506

predicted posterior mean

12345678 9101112131415161718 192021 222324 25262728
K

Although there is some variability in the predicted posterior means, we cannot see significant differences
among the schools in this example.

4

Methods and formulas

Continuing the discussion in Methods and formulas of [ME] meglm and using the definitions and
formulas defined there, we begin by considering the prediction of the random effects u; for the jth
cluster in a two-level model. Prediction of random effects in multilevel generalized linear models
involves assigning values to random effects, and there are many methods for doing so; see Skrondal
and Rabe-Hesketh (2009) and Skrondal and Rabe-Hesketh (2004, chap. 7) for a comprehensive
review. Stata offers two methods of predicting random effects: empirical Bayes means (also known
as posterior means) and empirical Bayes modes (also known as posterior modes). Below we provide
more details about the two methods.

Let O denote the estimated model parameters comprising 3 and the unique elements of o)
Empirical Bayes (EB) predictors of the random effects are the means or modes of the empirical
posterior distribution with the parameter estimates @ replaced with their estimates 6. The method
is called “empirical” because 0 is treated as known. EB combines the prior information about the
random effects with the likelihood to obtain the conditional posterior distribution of random effects.
Using Bayes’ theorem, the empirical conditional posterior distribution of random effects for cluster j
is
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Pr(y;,u;|X;,Z;; 5)
Pr(y,|X;,Z;; )
F(yiluy, X5, 255 B) p(uy; %)
[ f(yjluy) (u;) duy
_ 1w, X5, 255 8) ¢(uy; B)
L;(6)

w(uslyj, X;,Z5;0) =

The denominator is just the likelihood contribution of the jth cluster.

EB mean predictions of random effects, 1, also known as posterior means, are calculated as

ﬁ:/ate u; w(u;ly;, X;, Z;; 0) du;

e S 5195, X5, 252 B) 6(w;: 5) du;
Jra £(yjl05) d(u;) duy

where we use the notation u rather than U to distinguish predicted values from estimates. This
multivariate integral is approximated by the mean—variance adaptive Gaussian quadrature; see Methods
and formulas of [ME] meglm for details about the quadrature. If you have multiple random effects
within a level or random effects across levels, the calculation involves orthogonalizing transformations
using the Cholesky transformation because the random effects are no longer independent under the
posterior distribution.

In a linear mixed-effects model, the posterior density is multivariate normal, and EB means are also
best linear unbiased predictors (BLUPs); see Skrondal and Rabe-Hesketh (2004, 227). In generalized
mixed-effects models, the posterior density tends to multivariate normal as cluster size increases.

EB modal predictions can be approximated by solving for the mode ﬁj in

o, logw(u,ly;, X;,Z;;0) =0

Because the denominator in w(-) does not depend on u, we can omit it from the calculation to obtain
0 ~ -
e 10g{f(Yj|uj,Xj,Zj;ﬁ)¢(uj;2)}
u;

= ailogf (yj‘uJ’X]’ZWﬁ) + 38“]103;91’ (uj, ) =0

The calculation of EB modes does not require numerical integration, and for that reason they are
often used in place of EB means. As the posterior density gets closer to being multivariate normal,
EB modes get closer and closer to EB means.

Just like there are many methods of assigning values to the random effects, there exist many methods
of calculating standard errors of the predicted random effects; see Skrondal and Rabe-Hesketh (2009)
for a comprehensive review.

Stata uses the posterior standard deviation as the standard error of the posterior means predictor
of random effects. The EB posterior covariance matrix of the random effects is given by
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cov(u;ly;, X, Zj; 0) Z/ER (w; — 0;)(u; — ;) wuyly;, X, Zj; 0) du;

The posterior covariance matrix and the integrals are approximated by the mean—variance adaptive
Gaussian quadrature; see Methods and formulas of [ME] meglm for details about the quadrature.

Conditional standard errors for the estimated posterior modes are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of U; is the negative inverse
of the Hessian, ¢ (8, X, u,).

In what follows, we show formulas using the posterior means estimates of random effects u;,
which are used by default or if the means option is specified. If the modes option is specified, 1,

are simply replaced with the posterior modes 0; in these formulas.

For any ¢th observation in the jth cluster in a two-level model, define the linear predictor as
Mij = XijB + ziju;
The linear predictor includes the offset or exposure variable if one was specified during estimation,

unless the nooffset option is specified. If the fixedonly option is specified, 7} contains the linear
predictor for only the fixed portion of the model, 7;; = x;; 8.

The predicted mean, conditional on the random effects ﬁj, is
~ 1/~
Hij =g~ (7iz)

where ¢g~*() is the inverse link function for p;; = g~'(n;;) defined as follows for the available
links in link(link):

link Inverse link
identity Mij

logit 1/{1 + exp(—ni;)}
probit  B(ny)

log exp(7i;)

cloglog 1 — exp{—exp(n;;)}

By default, random effects and any statistic based on them—mu, fitted, pearson, deviance,
anscombe—are calculated using posterior means of random effects unless option modes is specified,
in which case the calculations are based on posterior modes of random effects.

Raw residuals are calculated as the difference between the observed and fitted outcomes,

Vij = Yij — ﬁij
and are only defined for the Gaussian family.

Let r;; be the number of Bernoulli trials in a binomial model, o be the conditional overdispersion
parameter under the mean parameterization of the negative binomial model, and ¢ be the conditional
overdispersion parameter under the constant parameterization of the negative binomial model.
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Pearson residuals are raw residuals divided by the square root of the variance function

Vi
A

where V(fi;;) is the family-specific variance function defined as follows for the available families in
family (family):

family Variance function V' (fi;;)
bernoulli ﬁij(l - ﬁij)

binomial Lij (1 — [ij/7i5)

gamma i

gaussian 1

nbinomial mean ﬁij(l + Oé,aij)

nbinomial constant Hij (14 96)
ordinal not defined

poisson Lij
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Deviance residuals are calculated as

-~

1/5 = sign(v;;) dizj

where the squared deviance residual c?fj is defined as follows:

Sfamily Squared deviance gfj
bernoulli —2log(1 — pij) ify;; =0
—2log(fti;) if yiy =1
binomial 275 log (%) if y;; =0
Tij — Hij

Tij — Hij

<

2yij log (/%:J) + 2(Tij — yij) log (T” : y\”) if 0 < yij < Tij

27’” log (‘7) if Yij = Tij

Yij Ujj
amma —2<log | &L ) — X
& { s (Mz‘j) Hig }

=3
M

gaussian 17%
nbinomial mean 2log (1 + aﬁij) a if Yij = 0

yzj 2 B 1 + ayij .
2y;; log (M ’ ) =(1+ ayij;) log (1 T a’uij) otherwise

nbinomial constant not defined
ordinal not defined
poisson 2, ify;; =0

2y;; log <y” ) —2U;;  otherwise
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Anscombe residuals, denoted V{]‘», are calculated as follows:

Sfamily Anscombe residual u{;—
2/3 ~2/34
3 {ui/ M) — 12 (i) |
bernoulli — 176
2 (Mi] :uz;)
2/34, ~2/3
3 {uil Ml rig) — B2 Eis /rig) |
binomial

2 (i — % /i) °

1/3  ~1/3
gamma —S(y”/ [/iij/ )

Mg
gaussian Vij

H(—ayi;) — H(—afiyy) + 15y — /%)

nbinomial mean

(fij + afigy) /°
nbinomial constant not defined
ordinal not defined
2/3 _ ~2/3
p01sson W
200,

where #(t) is a specific univariate case of the Hypergeometric2F1 function (Wolfram 1999, 771-772),
defined here as H(t) = o F1(2/3,1/3,5/3,1).

For a discussion of the general properties of the various residuals, see Hardin and Hilbe (2012,
chap. 4).
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melogit — Multilevel mixed-effects logistic regression

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
melogit depvar fe_equation [ I re_equation] [ | | re_equation . .. } [ , ()pli()ns}

where the syntax of fe_equation is
[indepvars] [zf] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
noconstant suppress constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation

98
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options

Description

Model
binomial (varname | #)

constraints (constraints)

collinear

SE/Robust
vce (veetype)

Reporting

level (#)
or

nocnsreport
notable
noheader
nogroup
nolrtest
display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

set binomial trials if data are in binomial form
apply specified linear constraints
keep collinear variables

vcetype may be oim, robust, or cluster clustvar

set confidence level; default is 1level (95)

report fixed-effects coefficients as odds ratios

do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

do not perform likelihood-ratio test comparing with logistic regression

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method
set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Logistic regression

Description

melogit fits mixed-effects models for binary and binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with success probability determined
by the logistic cumulative distribution function.

melogit performs optimization using the original metric of variance components. When variance
components are near the boundary of the parameter space, you may consider using the meqrlogit
command, which provides alternative parameterizations of variance components; see [ME] meqrlogit.

Options

Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern(matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.
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covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance (fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matmame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, j) and (k,!) are constrained to be equal if matnameli, j| = matnamel[k,1].

binomial (varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial () is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] estimation options.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(/3) rather than .
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents melogit from performing a likelihood-ratio test that compares the mixed-effects
logistic model with standard (marginal) logistic regression. This option may also be specified upon
replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (%fmt), pformat (% fint), sformat (% fimt), and
nolstretch; see [R] estimation options.
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Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints (#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for melogit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
The following options are available with melogit but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)}, noestimate, and dnumerical; see [ME]
meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

melogit is a convenience command for meglm with a logit link and a bernoulli or binomial
family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models
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Introduction

Mixed-effects logistic regression is logistic regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012). Guo and Zhao (2000) and Rabe-Hesketh and Skrondal (2012, chap. 10) are good
introductory readings on applied multilevel modeling of binary data.

melogit allows for not just one, but many levels of nested clusters of random effects. For example,
in a three-level model you can specify random effects for schools and then random effects for classes
nested within schools. In this model, the observations (presumably, the students) comprise the first
level, the classes comprise the second level, and the schools comprise the third level.

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of random effects u;,

Pr(y;; = 1[x;j,u;) = H(x;;8 + ziju;) (1)

for j = 1,..., M clusters, with cluster j consisting of ¢ = 1,...,n; observations. The responses are
the binary-valued y;;, and we follow the standard Stata convention of treating y;; = 1 if depvar;; # 0
and treating y;; = O otherwise. The 1 X p row vector x;; are the covariates for the fixed effects,
analogous to the covariates you would find in a standard logistic regression model, with regression
coefficients (fixed effects) 3. For notational convenience here and throughout this manual entry, we
suppress the dependence of 7;; on X;;.

The 1 x g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean 0 and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;;, so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Finally, because this is logistic regression, H (-) is the logistic cumulative distribution function, which
maps the linear predictor to the probability of a success (y;; = 1) with H(v) = exp(v)/{1+exp(v)}.

Model (1) may also be stated in terms of a latent linear response, where only y;; = I (yZ*J > 0)
is observed for the latent
Yij = XijB + 2w + €

The errors ¢;; are distributed as logistic with mean 0 and variance 72 /3 and are independent of u;.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
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calculate the log likelihood by Gauss—Hermite quadrature or some variation thereof. Because the
log likelihood is computed, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

melogit supports three types of Gauss—Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details. The simplest random-effects model
you can fit using melogit is the two-level model with a random intercept,

Pr(y,;j = 1‘11j) = H(ij,@+u])

This model can also be fit using xtlogit with the re option; see [XT] xtlogit.

Below we present two short examples of mixed-effects logit regression; refer to [ME] me and
[ME] meglm for additional examples including crossed random-effects models.

Two-level models

We begin with a simple application of (1) as a two-level model, because a one-level model, in our
terminology, is just standard logistic regression; see [R] logistic.

> Example 1

Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq
and Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.
. use http://www.stata-press.com/data/r13/bangladesh
(Bangladesh Fertility Survey, 1989)
. describe

Contains data from http://www.stata-press.com/data/r13/bangladesh.dta

obs: 1,934 Bangladesh Fertility Survey,
1989
vars: 7 28 May 2013 20:27
size: 19,340 (_dta has notes)
storage display value
variable name type format label variable label
district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float  %6.2f Age, mean centered
childl byte %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children

Sorted by: district

The women sampled were from 60 districts, identified by the variable district. Each district
contained either urban or rural areas (variable urban) or both. The variable c_use is the binary
response, with a value of 1 indicating contraceptive use. Other covariates include mean-centered age
and three indicator variables recording number of children. Below we fit a standard logistic regression
model amended to have random effects for each district.
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. melogit c_use urban age child* || district:
Fitting fixed-effects model:

Iteration O: log likelihood = -1229.5485
Iteration 1: log likelihood = -1228.5268
Iteration 2: log likelihood = -1228.5263
Iteration 3: log likelihood = -1228.5263
Refining starting values:

Grid node O: log likelihood = -1219.2681
Fitting full model:

Iteration 0: log likelihood = -1219.2681 (not concave)
Iteration 1: log likelihood = -1207.5978
Iteration 2: log likelihood = -1206.8428

Iteration 3: log likelihood = -1206.8322
Iteration 4: log likelihood = -1206.8322

Mixed-effects logistic regression Number of obs = 1934

Group variable: district Number of groups = 60

Obs per group: min = 2

avg = 32.2

max = 118

Integration method: mvaghermite Integration points = 7

Wald chi2(5) = 109.60

Log likelihood = -1206.8322 Prob > chi2 = 0.0000

c_use Coef. Std. Err. P P>|z]| [95% Conf. Interval]

urban . 7322765 .1194857 6.13 0.000 .4980888 .9664641

age -.0264981 .0078916 -3.36 0.001 -.0419654 -.0110309

childl 1.116001 .1580921 7.06 0.000 .8061465 1.425856

child2 1.365895 .1746691 7.82 0.000 1.02355 1.70824

child3 1.344031 .1796549 7.48 0.000 .9919139 1.696148

_cons -1.68929 .1477591  -11.43  0.000 -1.978892  -1.399687
district

var (_cons) .215618 .0733222 .1107208 .4198954

LR test vs. logistic regression: chibar2(01) = 43.39 Prob>=chibar2 = 0.0000

The estimation table reports the fixed effects and the estimated variance components. The fixed
effects can be interpreted just as you would the output from logit. You can also specify the or option
at estimation or on replay to display the fixed effects as odds ratios instead. If you did display results
as odds ratios, you would find urban women to have roughly double the odds of using contraception
as that of their rural counterparts. Having any number of children will increase the odds from three-
to fourfold when compared with the base category of no children. Contraceptive use also decreases
with age.

Underneath the fixed effect, the table shows the estimated variance components. The random-effects
equation is labeled district, meaning that these are random effects at the district level. Because
we have only one random effect at this level, the table shows only one variance component. The
estimate of o2 is 0.22 with standard error 0.07.

A likelihood-ratio test comparing the model to ordinary logistic regression is provided and is highly
significant for these data.

N
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Three-level models

Two-level models extend naturally to models with three or more levels with nested random effects.
By “nested”, we mean that the random effects shared within lower-level subgroups are unique to the
upper-level groups. For example, assuming that classroom effects would be nested within schools
would be natural, because classrooms are unique to schools.

> Example 2

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study measuring the cognitive
ability of patients with schizophrenia compared with their relatives and control subjects. Cognitive
ability was measured as the successful completion of the “Tower of London”, a computerized task,
measured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements
(one for each difficulty level). Because patients’ relatives were also tested, a family identifier, family,

was also recorded.

. use http://www.stata-press.com/data/r13/towerlondon

(Tower of London data)

. describe

Contains data from http://www.stata-press.com/data/r13/towerlondon.dta

obs: 677 Tower of London data
vars: 5 31 May 2013 10:41
size: 4,739 (_dta has notes)
storage display value

variable name  type format label variable label

family int %8.0g Family ID

subject int %9.0g Subject ID

dtlm byte %9.0g 1 = task completed

difficulty byte %9.0g Level of difficulty: -1, 0, or 1
group byte %8.0g 1: controls; 2: relatives; 3:

schizophrenics

Sorted by: family subject

We fit a logistic model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We allow for random effects due to families and due to subjects within families. We also
request to display odds ratios for the fixed-effects parameters.
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. melogit dtlm difficulty i.group || family: || subject: , or
Fitting fixed-effects model:

Iteration O: log likelihood = -317.35042
Iteration 1: log likelihood = -313.90007
Iteration 2: log likelihood = -313.89079
Iteration 3: log likelihood = -313.89079
Refining starting values:

Grid node O: log likelihood = -310.28429
Fitting full model:

Iteration O: log likelihood = -310.28429
Iteration 1: log likelihood = -307.36653
Iteration 2: log likelihood = -305.19357
Iteration 3: log likelihood = -305.12073

4.

Iteration 4: log likelihood = -305.12041
Iteration 5: log likelihood = -305.12041

Mixed-effects logistic regression Number of obs = 677
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration points = 7
Wald chi2(3) = 74.90
Log likelihood = -305.12041 Prob > chi2 = 0.0000
dtlm | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
difficulty .1923372 .037161 -8.53  0.000 .1317057 .2808806
group
2 . 7798263 .2763763 -0.70  0.483 .3893369 1.561961
3 .3491318 .13965 -2.63 0.009 .15941 . 764651
_cons .226307 .0644625 -5.22  0.000 .1294902 .3955112
family
var (_cons) .5692105 .5215654 .0944757 3.429459
family>
subject
var (_cons) 1.137917 .6854853 .3494165 3.705762
LR test vs. logistic regression: chi2(2) = 17.54  Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

Notes:

1. This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—melogit
assumes that subject is nested within family.
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2. The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families. You can suppress this table
with the nogroup or the noheader option, which will suppress the rest of the header as well.

After adjusting for the random-effects structure, the probability of successful completion of the
Tower of London decreases dramatically as the level of difficulty increases. Also, schizophrenics
(group==3) tended not to perform as well as the control subjects. Of course, we would make similar
conclusions from a standard logistic model fit to the same data, but the odds ratios would differ
somewhat.

N

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results

melogit stores the following in e ():

e(k_eq_model)
e(k_f)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e (b)

number of equations in overall model test
number of fixed-effects parameters

e(k_r) number of random-effects parameters
e(k_rs) number of variances

e(k_rc) number of covariances

e(df_m) model degrees of freedom

e(11) log likelihood

e(N_clust) number of clusters

e(chi2) x2

e(p) significance

e(1l_c) log likelihood, comparison model
e(chi2_c) x?2, comparison model

e(df_c) degrees of freedom, comparison model
e(p—c) significance, comparison model
e(rank) rank of e(V)

e(ic) number of iterations

e(rc) return code

e(converged)

1 if converged, O otherwise
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Macros
e(cmd)
e(cmdline)
e(depvar)
e(covariates)
e(ivars)
e (model)
e(title)
e(link)
e(family)
e(clustvar)
e(offset)
e(binomial)
e(intmethod)
e(n_quad)
e(chi2type)
e(vce)
e(vcetype)
e(opt)
e(which)
e(ml_method)
e(user)
e(technique)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)
e(predict)

Matrices
e(b)
e(Cns)
e(ilog)
e(gradient)
e(N_g)
e(g_min)
e(g_avg)
e(g_max)
e (V)
e(V_modelbased)

Functions
e(sample)

Methods and formulas

melogit

command as typed

name of dependent variable
list of covariates

grouping variables
logistic

title in estimation output
logit

bernoulli or binomial
name of cluster variable
offset

binomial number of trials
integration method

number of integration points
Wald; type of model x>
veetype specified in vce ()
title used to label Std. Err.
type of optimization

max or min; whether optimizer is to perform maximization or minimization

type of m1 method

name of likelihood-evaluator program
maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat
program used to implement predict

coefficient vector

constraints matrix

iteration log (up to 20 iterations)

gradient vector

group counts

group-size minimums

group-size averages

group-size maximums

variance—covariance matrix of the estimator
model-based variance

marks estimation sample

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by melogit (option binomial()), the methods presented below are in terms of the more
general binomial mixed-effects model.

For a two-level binomial model, consider the response y;; as the number of successes from a

series of r;; Bernoulli trials (replications). For cluster j, j = 1,..., M, the conditional distribution
of y; = (yj1,... ,yjnj)’, given a set of cluster-level random effects u;, is
n;
Tij Yij Tij—Yij
f(yjlu;) = ]___[ [( ”) {H(mg)} ! {1 *H(Thj)} ’ J]

i=1

T4
= exp Z {yijmj — rijlog {1+ exp(n;;)} + log ( ]ﬂ

yU

j

i=1 Yij

for m;; = X;;8 + ziju; + offset;; and H(v) = exp(v)/{1 + exp(v)}.
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: _ ) ) /
Defining r; = (rj1,...,7j,,)" and

where c(y;,r;) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(y;luy) = exp [yim; — rflog {1 +exp(n;)} + c(y;,r;)]

where 7; is formed by stacking the row vectors 7;;. We extend the definitions of the functions log(+)
and exp(-) to be vector functions where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and g X ¢ variance matrix
Y, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density
f(yj,uy),

L;(B,%) = (277)—‘1/2|2|_1/2/f(yj|uj)exp (—u;E_luj/2) du,
=eXp{C(Yj7rj)}(27T)fq/2\E|_1/2/exp{h(ﬁvz’uj)}duj

where
h(B,3,u;) = yin; —r}log {1+ exp(n;)} — ujZ  u,/2

and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(yjarj7vazj)'

The integration in (2) has no closed form and thus must be approximated. melogit offers four
approximation methods: mean—variance adaptive Gauss—Hermite quadrature (default unless a crossed
random-effects model is fit), mode-curvature adaptive Gauss—Hermite quadrature, nonadaptive Gauss—
Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of h (3, X, u;) about
the value of u; that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, £(3,X) = ZJM:1 L;(B,%).

2

Maximization of £(3,X) is performed with respect to (3, a%), where o2 is a vector comprising

the unique elements of ¥. Parameter estimates are stored in e(b) as (3, 3’2), with the corresponding
variance—covariance matrix stored in e (V).
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Description
Options for predict
Option for estat icc

Syntax for predict Menu for predict
Syntax for estat Menu for estat
Remarks and examples Stored results

Methods and formulas Also see

Description

The following postestimation commands are of special interest after melogit:

Command

Description

estat group
estat icc

summarize the composition of the nested groups
estimate intraclass correlations

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce
estimates
lincom

lrtest
margins

marginsplot
nlcom

predict
predictnl

pwcompare
test
testnl

summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

cataloging estimation results

point estimates, standard errors, testing, and inference for linear
combinations of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

112
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Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.

estat icc displays the intraclass correlation for pairs of latent linear responses at each nested
level of the model. Intraclass correlations are available for random-intercept models or for random-
coefficient models conditional on random-effects covariates being equal to 0. They are not available
for crossed-effects models.

Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [1_7}"] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [Iype] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description
Main
mu predicted mean; the default
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
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options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset variable in calculating predictions; relevant only
if you specified offset () when you fit the model
fixedonly prediction for the fixed portion of the model only
Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

remeans, remodes, reses(); see [ME] meglm postestimation.

mu, the default, calculates the predicted mean (the probability of a positive outcome), that is, the
inverse link function applied to the linear prediction. By default, this is based on a linear predictor
that includes both the fixed effects and the random effects, and the predicted mean is conditional on
the values of the random effects. Use the fixedonly option if you want predictions that include
only the fixed portion of the model, that is, if you want random effects set to 0.

fitted, xb, stdp, pearson, deviance, anscombe, means, modes, nooffset, fixedonly; see
[ME] meglm postestimation.

By default or if the means option is specified, statistics mu, fitted, xb, stdp, pearson, deviance,
and anscombe are based on the posterior mean estimates of random effects. If the modes option
is specified, these statistics are based on the posterior mode estimates of random effects.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.
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Syntax for estat

Summarize the composition of the nested groups

estat 5£oup

Estimate intraclass correlations

estat icc [, level(#)]

Menu for estat

Statistics > Postestimation > Reports and statistics

Option for estat icc

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a logistic mixed-
effects model with melogit. Here we show a short example of predicted probabilities and predicted
random effects; refer to [ME] meglm postestimation for additional examples.

> Example 1

In example 2 of [ME] melogit, we analyzed the cognitive ability (dt1m) of patients with schizophrenia
compared with their relatives and control subjects, by using a three-level logistic model with random
effects at the family and subject levels. Cognitive ability was measured as the successful completion
of the “Tower of London”, a computerized task, measured at three levels of difficulty.

. use http://www.stata-press.com/data/r13/towerlondon

(Tower of London data)

. melogit dtlm difficulty i.group || family: || subject: , or
(output omitted )

We obtain predicted probabilities based on the contribution of both fixed effects and random effects
by typing

. predict pr

(predictions based on fixed effects and posterior means of random effects)
(option mu assumed)

(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.
We obtain predictions of the posterior means themselves by typing

. predict re*, remeans
(calculating posterior means of random effects)
(using 7 quadrature points)
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Because we have one random effect at the family level and another random effect at the subject level,
Stata saved the predicted posterior means in the variables rel and re2, respectively. If you are not
sure which prediction corresponds to which level, you can use the describe command to show the
variable labels.

Here we list the data for family 16:

. list family subject dtlm pr rel re2 if family==16, sepby(subject)

family subject dtlm pr rel re2
208. 16 5 1 .5337746 .8045555 .2204122
209. 16 5 0 .1804649 .8045555 .2204122
210. 16 5 0 .0406325 .8045555 .2204122
211. 16 34 1 .8956181 .8045555  1.430945
212. 16 34 1 .6226832 .8045555  1.430945
213. 16 34 1 .2409364 .8045555  1.430945
214. 16 35 0 .6627467 .8045555  -.042955
215. 16 35 1 .2742936 .8045555  -.042955
216. 16 35 0 .0677705 .8045555  -.042955

The predicted random effects at the family level (rel) are the same for all members of the family.
Similarly, the predicted random effects at the individual level (re2) are constant within each individual.
The predicted probabilities (pr) for this family seem to be in fair agreement with the response (dt1lm)
based on a cutoff of 0.5.

We can use estat icc to estimate the residual intraclass correlation (conditional on the difficulty
level and the individual’s category) between the latent responses of subjects within the same family
or between the latent responses of the same subject and family:

. estat icc

Residual intraclass correlation

Level ICC Std. Err. [95% Conf. Intervall]
family .1139105 .0997727 .0181851 .4715289
subject|family .3416307 .0889471 .192923 .5297291

estat icc reports two intraclass correlations for this three-level nested model. The first is the
level-3 intraclass correlation at the family level, the correlation between latent measurements of the
cognitive ability in the same family. The second is the level-2 intraclass correlation at the subject-
within-family level, the correlation between the latent measurements of cognitive ability in the same
subject and family.

There is not a strong correlation between individual realizations of the latent response, even within
the same subject.

d
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Stored results

estat icc stores the following in r():

Scalars
r(icc#) level-# intraclass correlation
r(se#) standard errors of level-# intraclass correlation
r(level) confidence level of confidence intervals
Macros
r(label#) label for level #
Matrices
r(ci#) vector of confidence intervals (lower and upper) for level-# intraclass correlation

For a G-level nested model, # can be any integer between 2 and G.

Methods and formulas

Methods and formulas are presented under the following headings:

Prediction
Intraclass correlations

Prediction

Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Intraclass correlations

Consider a simple, two-level random-intercept model, stated in terms of a latent linear response,
where only y;; = I (yz*J > 0) is observed for the latent variable,

2)

* ( (1)

with ¢ =1,...,n; and level-2 groups j = 1,..., M. Here 3 is an unknown fixed intercept, ugz) i
(1)

ij
mean O and variance 0? = 72/3; random intercepts are assumed to be normally distributed with
mean 0 and variance o2 and to be independent of error terms.

a level-2 random intercept, and €

The intraclass correlation for this model is

o3

p = Cort(y;;,yir;) = /3 + 02

It corresponds to the correlation between the latent responses 7 and i’ from the same group j.

Now consider a three-level nested random-intercept model,

. 2 3 1
Yijr =B+ Uék) + “Eg '+ Egjl)c

is a level-1 error term. Errors are assumed to be logistic with
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for measurements ¢ = 1,...,n,; and level-2 groups j = 1,..., My}, nested within level-3 groups
k =1,..., M. Here uﬁ) is a level-2 random intercept, u,(f’) is a level-3 random intercept, and
6511]1 is a level-1 error term. The error terms have a logistic distribution with mean O and variance

0? = 12 /3. The random intercepts are assumed to be normally distributed with mean 0 and variances
o5 and 03, respectively, and to be mutually independent. The error terms are also independent of the

random intercepts.

We can consider two types of intraclass correlations for this model. We will refer to them as
level-2 and level-3 intraclass correlations. The level-3 intraclass correlation is

o3

G) = Corr(ytp, Yl iip) =
P (yz]]myz J k:) 7T2/3+0'§ +0_§

This is the correlation between latent responses ¢ and ¢’ from the same level-3 group k and from
different level-2 groups j and j'.

The level-2 intraclass correlation is

2 2
@) — Comr(vf syt )= — 22108
P (ymkvyz jk) 7T2/3 4 0'% + O.g

This is the correlation between latent responses 7 and i’ from the same level-3 group % and level-2
group j. (Note that level-1 intraclass correlation is undefined.)

More generally, for a G-level nested random-intercept model, the g-level intraclass correlation is

defined as o
(9) — Zl:g of
- G
m2/3+ >, 07

The above formulas also apply in the presence of fixed-effects covariates X in a random-
effects model. In this case, intraclass correlations are conditional on fixed-effects covariates and are
referred to as residual intraclass correlations. estat icc also uses the same formulas to compute
intraclass correlations for random-coefficient models, assuming 0 baseline values for the random-effects
covariates, and labels them as conditional intraclass correlations.

Intraclass correlations will always fall in [0,1] because variance components are nonnegative. To
accommodate the range of an intraclass correlation, we use the logit transformation to obtain confidence
intervals. We use the delta method to estimate the standard errors of the intraclass correlations.

Let p(9) be a point estimate of the intraclass correlation and SAE(ﬁ(g)) be its standard error. The
(1 — ) x 100% confidence interval for logit(p(9)) is

SE ﬁ(g))

59y £ _\F
) E e 50— )

logit(p

where 2, /5 is the 1 — /2 quantile of the standard normal distribution and logit(x) = In{z/(1—z)}.
Let k,, be the upper endpoint of this interval, and let k; be the lower. The (1 —«) x 100% confidence

interval for p(g) is then given by
1 1
1+e k714 e ku
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Also see
[ME] melogit — Multilevel mixed-effects logistic regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

menbreg — Multilevel mixed-effects negative binomial regression

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
menbreg depvar fe_equation [ I re_equation] [ | | re_equation . .. } [ , ()pli()ns}

where the syntax of fe_equation is
[indepvars] [if ] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
noconstant suppress the constant term from the fixed-effects equation
exposure (varname,) include In(varname,.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation

120
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options

Description

Model
dispersion (dispersion)

constraints (constraints)
collinear

SE/Robust
vce (veetype)

Reporting

level (#)
irr
nocnsreport
notable
noheader
nogroup

nolrtest

display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

parameterization of the conditional overdispersion;
dispersion may be mean (default) or constant

apply specified linear constraints
keep collinear variables

vcetype may be oim, robust, or cluster clustvar

set confidence level; default is 1level (95)

report fixed-effects coefficients as incidence-rate ratios
do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

do not perform likelihood-ratio test comparing with negative
binomial regression

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method

set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Negative binomial regression

Description
menbreg fits mixed-effects negative binomial models to count data. The conditional distribution
of the response given random effects is assumed to follow a Poisson-like process, except that the
variation is greater than that of a true Poisson process.

Options
Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

exposure (varname,) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; In(varname.) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset (varname,) specifies that varname, be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern (matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.
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covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the 7, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, ) and (k,!) are constrained to be equal if matnameli, j| = mamamel[k,1].

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given
random effects. dispersion(mean), the default, yields a model where the conditional overdis-
persion is a function of the conditional mean given random effects. For example, in a two-level
model, the conditional overdispersion is equal to 1 +aF(y;;|u;). dispersion(constant) yields
a model where the conditional overdispersion is constant and is equal to 1+ 6. « and ¢ are the
respective conditional overdispersion parameters.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(8)
rather than (. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents menbreg from performing a likelihood-ratio test that compares the mixed-effects
negative binomial model with standard (marginal) negative binomial regression. This option may
also be specified upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint), sformat (%fmt), and
nolstretch; see [R] estimation options.
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Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints (#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for menbreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
The following options are available with menbreg but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)}, noestimate, and dnumerical; see [ME]
meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

menbreg is a convenience command for meglm with a log link and an nbinomial family; see
[ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
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Introduction

Mixed-effects negative binomial regression is negative binomial regression containing both fixed
effects and random effects. In longitudinal data and panel data, random effects are useful for modeling
intracluster correlation; that is, observations in the same cluster are correlated because they share
common cluster-level random effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skro-
ndal (2012). Rabe-Hesketh and Skrondal (2012, chap. 13) is a good introductory reading on applied
multilevel modeling of count data.

menbreg allows for not just one, but many levels of nested clusters of random effects. For example,
in a three-level model you can specify random effects for schools and then random effects for classes
nested within schools. In this model, the observations (presumably, the students) comprise the first
level, the classes comprise the second level, and the schools comprise the third.

However, for simplicity, consider a two-level model, where for a series of M independent clusters,
and conditional on the latent variable (;; and a set of random effects u;,

Yij|Cij ~ Poisson((;;)

and
Cijlu; ~ Gamma(r;;, pij;)
and
u; ~ ]\7(07 E)
where y;; is the count response of the ith observation, ¢ = 1,...,n;, from the jth cluster,
j=1,...,M, and r;; and p;; have two different parameterizations, (2) and (3) below. The random

effects u; are M realizations from a multivariate normal distribution with mean O and ¢ X ¢
variance matrix Y. The random effects are not directly estimated as model parameters but are instead
summarized according to the unique elements of ¥, known as variance components.

The probability that a random response y;; takes the value y is then given by

F(y + Tij) Tij

D+ Dl P .

Pr(yi; = ylu;) =

where for convenience we suppress the dependence of the observable data y;; on r;; and p;;.

Model (1) is an extension of the standard negative binomial model (see [R] nbreg) to incorporate
normally distributed random effects at different hierarchical levels. (The negative binomial model
itself can be viewed as a random-effects model, a Poisson model with a gamma-distributed random
effect.) The standard negative binomial model is used to model overdispersed count data for which the
variance is greater than that of a Poisson model. In a Poisson model, the variance is equal to the mean,
and thus overdispersion is defined as the extra variability compared with the mean. According to this
definition, the negative binomial model presents two different parameterizations of the overdispersion:
the mean parameterization, where the overdispersion is a function of the mean, 1 + aF (Y|x)7 a>0;
and the constant parameterization, where the overdispersion is a constant function, 1+ 4,5 > 0. We
refer to v and 0 as conditional overdispersion parameters.
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Let 11;; = E(yi;|x, u5) = exp(x,;8+2;;u;), where x;; is the 1 x p row vector of the fixed-effects
covariates, analogous to the covariates you would find in a standard negative binomial regression
model, with regression coefficients (fixed effects) 3; z;; is the 1 x ¢ vector of the random-effects
covariates and can be used to represent both random intercepts and random coefficients. For example,
in a random-intercept model, z;; is simply the scalar 1. One special case places z;; = X;;, so that
all covariate effects are essentially random and distributed as multivariate normal with mean 3 and
variance .

Similarly to the standard negative binomial model, we can consider two parameterizations of
what we call the conditional overdispersion, the overdispersion conditional on random effects, in a
random-effects negative binomial model. For the mean-overdispersion (or, more technically, mean-
conditional-overdispersion) parameterization,

1
ri; = 1/a and p;; = T+ am, (2)
ij

and the conditional overdispersion is equal to 1 + «/;;. For the constant-overdispersion (or, more
technically, constant-conditional-overdispersion) parameterization,

1

153 )

rij = pij/0 and pij =

and the conditional overdispersion is equal to 1 + . In what follows, for brevity, we will use the
term overdispersion parameter to mean conditional overdispersion parameter, unless stated otherwise.

In the context of random-effects negative binomial models, it is important to decide which model
is used as a reference model for the definition of the overdispersion. For example, if we consider
a corresponding random-effects Poisson model as a comparison model, the parameters o and ¢ can
still be viewed as unconditional overdispersion parameters, as we show below, although the notion
of a constant overdispersion is no longer applicable.

If we retain the definition of the overdispersion as the excess variation with respect to a Poisson
process for which the variance is equal to the mean, we need to carefully distinguish between the
marginal (unconditional) mean with random effects integrated out and the conditional mean given
random effects.

In what follows, for simplicity, we omit the dependence of the formulas on x. Conditionally on
random effects, the (conditional) dispersion Var(y;;|u;) = (14cu;;) i, for the mean parameterization
and Var(y;;|u;) = (1 + ), for the constant parameterization; the usual interpretation of the
parameters holds (conditionally).

If we consider the marginal mean or, specifically, the marginal dispersion for, for example, a
two-level random-intercept model, then

Var(y;;) = [1+ {exp(0®)(1 + a) — 1} E(yi5)] E(yi)
for the mean parameterization and
Var(y;;) = [1 + 6+ {exp(c?) — 1}E(yij)] E(yi;)

for the constant parameterization, where o is the variance component corresponding to the random
intercept.
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A few things of interest compared with the standard negative binomial model. First, the random-
effects negative binomial model is not strictly an overdispersed model. The combination of values
of o and ¢ can lead to an underdispersed model, a model with smaller variability than the Poisson
variability. Underdispersed models are not as common in practice, so we will concentrate on the
overdispersion in this entry. Second, « (or d) no longer solely determine the overdispersion and thus
cannot be viewed as unconditional overdispersion parameters. Overdispersion is now a function of
both « (or 6) and o2. Third, the notion of a constant overdispersion is not applicable.

Two special cases are worth mentioning. When o2 = 0, the dispersion reduces to that of a standard
negative binomial model. When o = 0 (or § = 0), the dispersion reduces to that of a two-level
random-intercept Poisson model, which itself is, in general, an overdispersed model; see Rabe-Hesketh
and Skrondal (2012, chap. 13.7) for more details. As such, o and ¢ retain the typical interpretation
as dispersion parameters relative to a random-intercept Poisson model.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the linear
mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using mixed and
fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there is insight
to be gained through examination of the linear mixed model. This is especially true for Stata users
because the terminology, syntax, options, and output for fitting these types of models are nearly
identical. See [ME] mixed and the references therein, particularly in the Introduction of [ME] mixed,
for more information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

menbreg supports three types of Gauss—Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects negative binomial regression; refer to
[ME] me and [ME] meglm for more examples including crossed-effects models.

Two-level models

> Example 1

Rabe-Hesketh and Skrondal (2012, chap. 13.7) analyze the data from Winkelmann (2004) on
the impact of the 1997 health reform in Germany on the number of doctor visits. The intent of
policymakers was to reduce government expenditures on health care. We use a subsample of the data
restricted to 1,158 women who were employed full time the year before or after the reform.
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. use http://www.stata-press.com/data/r13/drvisits
. describe

Contains data from http://www.stata-press.com/data/r13/drvisits.dta

obs: 2,227
vars: 8 23 Jan 2013 18:39
size: 71,264
storage display value
variable name  type format label variable label
id float  %9.0g person id
numvisit float  %9.0g number of doctor visits in the
last 3 months before interview
age float  %9.0g age in years
educ float  %9.0g education in years
married float  %9.0g =1 if married, O otherwise
badh float  %9.0g self-reported health status, =1
if bad
loginc float  %9.0g log of household income
reform float %9.0g =0 if interview before reform, =1
if interview after reform
Sorted by:

The dependent variable, numvisit, is a count of doctor visits. The covariate of interest is a dummy
variable, reform, which indicates whether a doctor visit took place before or after the reform. Other
covariates include a self-reported health status, age, education, marital status, and a log of household
income.
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We first fit a two-level random-intercept Poisson model. We specify the random intercept at the
id level, that is, an individual-person level.

. mepoisson numvisit reform age educ married badh loginc || id:, irr
Fitting fixed-effects model:

Iteration 0: log likelihood = -9326.8542
Iteration 1: log likelihood = -5989.7308
Iteration 2: log likelihood = -5942.7581
Iteration 3: log likelihood = -5942.7243
Iteration 4: log likelihood = -5942.7243

Refining starting values:

Grid node O: log likelihood = -4761.1257
Fitting full model:

Iteration O: log likelihood = -4761.1257
Iteration 1: log likelihood = -4683.2239
Iteration 2: log likelihood = -4646.9329
Iteration 3: log likelihood = -4645.736
Iteration 4: log likelihood = -4645.7371
Iteration 5: log likelihood = -4645.7371

Mixed-effects Poisson regression Number of obs = 2227
Group variable: id Number of groups = 1518
Obs per group: min = 1
avg = 1.5
max = 2
Integration method: mvaghermite Integration points = 7
Wald chi2(6) = 249.37
Log likelihood = -4645.7371 Prob > chi2 = 0.0000
numvisit IRR  Std. Err. z P>|z| [95% Conf. Intervall
reform .9517026 .0309352 -1.52 0.128 .8929617 1.014308
age 1.005821 .002817 2.07 0.038 1.000315 1.011357
educ 1.008788 .0127394 0.69 0.488 .9841258 1.034068
married 1.082078 .0596331 1.43 0.152 .9712905 1.205503
badh 2.471857 .151841 14.73  0.000 2.191471 2.788116
loginc 1.094144 .0743018 1.32 0.185 .9577909 1.249909
_cons .5216748 .2668604 -1.27 0.203 .191413 1.421766

id
var (_cons) .8177932 .0503902 .724761 .9227673

LR test vs. Poisson regression: chibar2(01) = 2593.97 Prob>=chibar2 = 0.0000

. estimates store mepoisson

Because we specified the irr option, the parameters are reported as incidence-rate ratios. The
healthcare reform seems to reduce the expected number of visits by 5% but without statistical
significance.

Because we have only one random effect at the id level, the table shows only one variance
component. The estimate of o2 is 0.82 with standard error 0.05. The reported likelihood-ratio test
shows that there is enough variability between women to favor a mixed-effects Poisson regression
over a standard Poisson regression; see Distribution theory for likelihood-ratio test in [ME] me for a
discussion of likelihood-ratio testing of variance components.

It is possible that after conditioning on the person-level random effect, the counts of doctor visits
are overdispersed. For example, medical problems occurring during the time period leading to the
survey can result in extra doctor visits. We thus reexamine the data with menbreg.
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. menbreg numvisit reform age educ married badh loginc || id:, irr
Fitting fixed-effects model:

Iteration O: log likelihood = -4610.7165
Iteration 1: log likelihood = -4563.4682
Iteration 2: log likelihood = -4562.3241
Iteration 3: log likelihood = -4562.3238

Refining starting values:
Grid node O: log likelihood = -4643.5216
Fitting full model:

Iteration 0: log likelihood = -4643.5216 (not concave)
Iteration 1: log likelihood = -4555.961
Iteration 2: log likelihood = -4518.7353
Iteration 3: log likelihood = -4513.1951
Iteration 4: log likelihood = -4513.1853
Iteration 5: log likelihood = -4513.1853

Mixed-effects nbinomial regression Number of obs = 2227

Overdispersion: mean
Group variable: id Number of groups = 1518
Obs per group: min = 1
avg = 1.5
max = 2
Integration method: mvaghermite Integration points = 7
Wald chi2(6) = 237.35
Log likelihood = -4513.1853 Prob > chi2 = 0.0000
numvisit IRR  Std. Err. z P>|z]| [95% Conf. Intervall
reform .9008536 .042022 -2.24 0.025 .8221449 .9870975
age 1.003593 .0028206 1.28 0.202 .9980799 1.009137
educ 1.007026 .012827 0.55 0.583 .9821969 1.032483
married 1.089597 .064213 1.46 0.145 .970738 1.223008
badh 3.043562 .2366182 14.32  0.000 2.613404 3.544523
loginc 1.136342 .0867148 1.67 0.094 .9784833 1.319668
_cons .5017199 .285146 -1.21  0.225 .1646994 1.528377
/1nalpha -.7962692 .1190614 -6.69 0.000 -1.029625 -.5629132

id

var (_cons) .4740088 .0582404 .3725642 .6030754
LR test vs. nbinomial regression:chibar2(01) = 98.28 Prob>=chibar2 = 0.0000

The estimated effect of the healthcare reform now corresponds to the reduction in the number of
doctor visits by 10%—twice as much compared with the Poisson model—and this effect is significant
at the 5% level.

The estimate of the variance component o2 drops down to 0.47 compared with mepoisson, which
is not surprising given that now we have an additional parameter that controls the variability of the
data.

Because the conditional overdispersion « is assumed to be greater than 0, it is parameterized
on the log scale, and its log estimate is reported as /lnalpha in the output. In our model, & =
exp(—0.80) = 0.45. We can also compute the unconditional overdispersion in this model by using
the corresponding formula in the Introduction above: exp(.47) x (1 4 .45) — 1 = 1.32.

The reported likelihood-ratio test shows that there is enough variability between women to favor a
mixed-effects negative binomial regression over negative binomial regression without random effects.
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We can also perform a likelihood-ratio test comparing the mixed-effects negative binomial model to
the mixed-effects Poisson model. Because we are comparing two different estimators, we need to use
the force option with 1rtest. In general, there is no guarantee as to the validity or interpretability of
the resulting likelihood-ratio test, but in our case we know the test is valid because the mixed-effects
Poisson model is nested within the mixed-effects negative binomial model.

. lrtest mepoisson ., force
Likelihood-ratio test LR chi2(1) = 265.10
(Assumption: mepoisson nested in .) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The reported likelihood-ratio test favors the mixed-effects negative binomial model. The reported
test is conservative because the test of Hy: o = 0 occurs on the boundary of the parameter space;
see Distribution theory for likelihood-ratio test in [ME] me for details.

4

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by ||. The order of nesting goes from left
to right as the groups go from biggest (highest level) to smallest (lowest level). To demonstrate a
three-level model, we revisit example 2 from [ME] meqrpoisson.

> Example 2

Rabe-Hesketh and Skrondal (2012, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971-1980.

. use http://www.stata-press.com/data/r13/melanoma
(Skin cancer (melanoma) data)
. describe

Contains data from http://www.stata-press.com/data/r13/melanoma.dta

obs: 354 Skin cancer (melanoma) data
vars: 6 30 May 2013 17:10

size: 4,956 (_dta has notes)

storage display value

variable name type format label variable label
nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas

deaths int %9.0g No. deaths during 1971-1980
expected float  %9.0g No. expected deaths
uv float  %9.0g UV dose, mean-centered
Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being recorded
for each of 354 counties, which are level II or level III EEC-defined areas (variable county, which
identifies the observations). Counties are nested within regions, and regions are nested within nations.
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The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries. The
variable uv is a measure of exposure to ultraviolet (UV) radiation.

In example 2 of [ME] meqrpoisson, we noted that because counties also identified the observations,
we could model overdispersion by using a four-level Poisson model with a random intercept at the
county level. Here we fit a three-level negative binomial model with the default mean-dispersion
parameterization.

. menbreg deaths uv, exposure(expected) || nation: || region:
Fitting fixed-effects model:

Iteration 0: log likelihood = -1361.855
Iteration 1: log likelihood = -1230.0211
Iteration 2: log likelihood = -1211.049
Iteration 3: log likelihood = -1202.5641
Iteration 4: log likelihood = -1202.5329
Iteration 5: log likelihood = -1202.5329
Refining starting values:

Grid node O: log likelihood = -1209.6951
Fitting full model:

Iteration 0: log likelihood = -1209.6951 (not concave)

(output omitted )
Iteration 11: 1log likelihood = -1086.3902
Mixed-effects nbinomial regression Number of obs = 354
Overdispersion: mean
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
nation 9 3 39.3 95
region 78 1 4.5 13
Integration method: mvaghermite Integration points = 7
Wald chi2(1) = 8.73
Log likelihood = -1086.3902 Prob > chi2 = 0.0031
deaths Coef.  Std. Err. z P>|z| [95% Conf. Intervall
uv -.0335933 .0113725 -2.95 0.003 -.055883 -.0113035
_cons -.0790606 .1295931 -0.61  0.542 -.3330583 .1749372
1n(expected) 1 (exposure)
/1lnalpha -4.182603 .3415036  -12.25  0.000 -4.851937 -3.513268
nation
var (_cons) .1283614 .0678971 .0455187 .3619758
nation>
region
var (_cons) .0401818 .0104855 .0240938 .067012
LR test vs. nbinomial regression: chi2(2) = 232.29 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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The estimates are very close to those of meqrpoisson. The conditional overdispersion in our
model is @ = exp(—4.18) = 0.0153. It is in agreement with the estimate of the random intercept
at the county level, 0.0146, in a four-level random-effects Poisson model reported by meqrpoisson.
Because the negative binomial is a three-level model, we gained some computational efficiency over
the four-level Poisson model.

N

Stored results

menbreg stores the following in e ():

Scalars
e(N) number of observations
e (k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e(b)
e(k_eq-model) number of equations in overall model test
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) x®
e(p) significance
e(1l_c) log likelihood, comparison model
e(chi2_c) x?2, comparison model
e(df_c) degrees of freedom, comparison model
e(p-c) significance, comparison model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code

e(converged) 1 if converged, O otherwise
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Methods and formulas

Without a loss of generality, consider a two-level negative binomial model. For cluster j, j =
1,..., M, the conditional distribution of y; = (y;1,. ..

Macros

e(cmd)
e(cmdline)
e(depvar)
e(covariates)
e(ivars)

e (model)
e(title)
e(link)
e(family)
e(clustvar)
e(dispersion)
e(offset)

e (exposure)
e(intmethod)
e(n_quad)
e(chi2type)
e(vce)
e(vcetype)
e(opt)
e(which)
e(ml_method)
e(user)
e(technique)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)
e(predict)

Matrices

e(b)

e(Cns)

e(ilog)
e(gradient)
e(N_g)

e(g_min)
e(g_avg)
e(g_max)

e(V)
e(V_modelbased)

Functions

e(sample)

menbreg
command as typed

name of dependent variable

list of covariates
grouping variables
nbreg

title in estimation output
log

nbinomial

name of cluster variable
mean or constant
offset

exposure variable
integration method

number of integration points

Wald; type of model x?
veetype specified in vce()
title used to label Std. Err.
type of optimization

max or min; whether optimizer is to perform maximization or minimization

type of m1 method

name of likelihood-evaluator program

maximization technique
the checksum

variables used in calculation of checksum

bV

program used to implement estat
program used to implement predict

coefficient vector
constraints matrix

iteration log (up to 20 iterations)

gradient vector

group counts
group-size minimums
group-size averages
group-size maximums

variance—covariance matrix of the estimator

model-based variance

marks estimation sample

,Yjn;) > given a set of cluster-level random

effects u; and the conditional overdispersion parameter ¢ in a mean-overdispersion parameterization,

18

f(yjluj, a) =

Dy +7r)

Ii{r

Yij + l)r(r) g

S

= exp Z {log T'(y;; + ) — log I'(y;; + 1) — log I'(r) + ¢(yi5, ) }

i=1
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where ¢(y;;, @) is defined as

1
- log{1 + exp(n;; +loga)} — yi; log{1 + exp(—n;; —log )}

and 7 = 1/c, p;ij = 1/(1 4+ apsj), and n;; = X8 + z;;u;.
For the constant-overdispersion parameterization with the conditional overdispersion parameter &,
the conditional distribution of y; is

nj

P(yi; +1i5) 4, vis
f(yjlug,0) = ]:[1 {F(yz’(ﬂ 1)r(7~)ij)p 9(1-p) }

nj
= exp [Z {log I'(yi; + 1i5) —log I'(yi; + 1) — log I'(rij) + c(yij, )}
i=1

where ¢(y;;,0) is defined as

- (% + yij> log(1 4 9) + s logd
and 7;; = p1;;/0 and p = 1/(1 +9).

For conciseness, let v denote either conditional overdispersion parameter. Because the prior
distribution of u; is multivariate normal with mean 0 and ¢ X g variance matrix X, the likelihood
contribution for the jth cluster is obtained by integrating u; out of the joint density f(y;,u;,~),

L£;(3,%,7) = (2m)~1? |z|*1/2/f(yj|uj,y) exp (—uj¥7"u;/2) du;
(4)
— (2m)9/2 g2 /exp{h (8,2, u;,7)} du;

where
h(B,%,u5,7) = f(y;lu;,7) — wjE  a;/2

and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(yja Xja Zj ) .

The integration in (4) has no closed form and thus must be approximated. menbreg offers four
approximation methods: mean—variance adaptive Gauss—Hermite quadrature (default unless a crossed
random-effects model is fit), mode-curvature adaptive Gauss—Hermite quadrature, nonadaptive Gauss—
Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of h (3, X, u;) about
the value of u; that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (4) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, £(3,%,v) = ZJM:1 L;(B,%,7).
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2

Maximization of £(3,%,~) is performed with respect to (3, Iny,o?), where o2 is a vector

comprising the unique elements of X. Parameter estimates are stored in e(b) as (3, Iny,5>), with
the corresponding variance—covariance matrix stored in e (V).
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Also see

[ME] menbreg postestimation — Postestimation tools for menbreg

[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meqrpoisson — Multilevel mixed-effects Poisson regression (QR decomposition)

[ME] me — Introduction to multilevel mixed-effects models

[SEM] intro 5 — Tour of models (Multilevel mixed-effects models)

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands
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Title

menbreg postestimation — Postestimation tools for menbreg

Description Syntax for predict Menu for predict

Options for predict Syntax for estat group Menu for estat

Remarks and examples Methods and formulas Also see
Description

The following postestimation command is of special interest after menbreg:

Command

Description

estat group

summarize the composition of the nested groups

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce
estimates
lincom

Irtest
margins

marginsplot
nlcom

predict
predictnl

pwcompare
test
testnl

summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

cataloging estimation results

point estimates, standard errors, testing, and inference for linear
combinations of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.

137
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Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [zf] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [type] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description
Main
mu number of events; the default
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset or exposure variable in calculating predictions; relevant only
if you specified offset () or exposure() when you fit the model
fixedonly prediction for the fixed portion of the model only
Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict
Main

Is

remeans, remodes, reses(); see [ME] meglm postestimation.

mu, the default, calculates the predicted mean (the predicted number of events), that is, the inverse
link function applied to the linear prediction. By default, this is based on a linear predictor that
includes both the fixed effects and the random effects, and the predicted mean is conditional on
the values of the random effects. Use the fixedonly option if you want predictions that include
only the fixed portion of the model, that is, if you want random effects set to 0.

fitted, xb, stdp, pearson, deviance, anscombe, means, modes, nooffset, fixedonly; see
[ME] meglm postestimation.

By default or if the means option is specified, statistics mu, pr, fitted, xb, stdp, pearson,
deviance, and anscombe are based on the posterior mean estimates of random effects. If the
modes option is specified, these statistics are based on the posterior mode estimates of random
effects.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

Syntax for estat group

estat group

Menu for estat

Statistics > Postestimation > Reports and statistics

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
negative binomial model with menbreg. For the most part, calculation centers around obtaining
estimates of the subject/group-specific random effects. Random effects are not estimated when the
model is fit but instead need to be predicted after estimation.

Here we show a short example of predicted counts and predicted random effects; refer to [ME] meglm
postestimation for additional examples applicable to mixed-effects generalized linear models.

> Example 1

In example 2 of [ME] menbreg, we modeled the number of deaths among males in nine European
nations as a function of exposure to ultraviolet radiation (uv). We used a three-level negative binomial
model with random effects at the nation and region levels.
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. use http://www.stata-press.com/data/r13/melanoma
(Skin cancer (melanoma) data)

. menbreg deaths uv, exposure(expected) || nation: || region:
(output omitted )

We can use predict to obtain the predicted counts as well as the estimates of the random effects
at the nation and region levels.
. predict mu
(predictions based on fixed effects and posterior means of random effects)

(option mu assumed)
(using 7 quadrature points)

. predict re_nat re_reg, remeans
(calculating posterior means of random effects)
(using 7 quadrature points)

Stata displays a note that the predicted values of mu are based on the posterior means of random
effects. You can use option modes to obtain predictions based on the posterior modes of random
effects.

Here we list the data for the first nation in the dataset, which happens to be Belgium:

. list nation region deaths mu re_nat re_reg if nation==1, sepby(region)

nation region deaths mu re_nat re_reg
1. | Belgium 1 79 64.4892  -.0819939 .2937711
2. | Belgium 2 80 77.64736 -.0819939 .024005
3. | Belgium 2 51  44.56528 -.0819939 .024005
4. | Belgium 2 43  53.10434  -.0819939 .024005
5. | Belgium 2 89 65.35963 -.0819939 .024005
6. | Belgium 2 19  35.18457 -.0819939 .024005
7. | Belgium 3 19  8.770186  -.0819939  -.3434432
8. | Belgium 3 15 43.95521  -.0819939  -.3434432
9. | Belgium 3 33 34.17878  -.0819939  -.3434432
10. | Belgium 3 9 7.332448 -.0819939  -.3434432
11. | Belgium 3 12 12.93873 -.0819939  -.3434432

We can see that the predicted random effects at the nation level, re_nat, are the same for all
the observations. Similarly, the predicted random effects at the region level, re_reg, are the same
within each region. The predicted counts, mu, are not as close to the observed deaths as the predicted
counts from the mixed-effects Poisson model in example 1 of [ME] mepoisson postestimation.

N

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.

Also see
[ME] menbreg — Multilevel mixed-effects negative binomial regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

meologit — Multilevel mixed-effects ordered logistic regression

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
meologit depvar fe_equation [ |l re_equation} [ || re_equation . .. ] [ , options]

where the syntax of fe_equation is
[indepvars] [if ] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
offset (varname) include varname in model with coefficient constrained to 1
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation

141



142 meologit — Multilevel mixed-effects ordered logistic regression

display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

options Description
Model
constraints (constraints)  apply specified linear constraints
collinear keep collinear variables
SE/Robust
vce (veetype) vcetype may be oim, robust, or cluster clustvar
Reporting
level (#) set confidence level; default is 1level (95)
or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with ordered logistic

regression

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method
set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Ordered logistic regression

Description

meologit fits mixed-effects logistic models for ordered responses. The actual values taken on by
the response are irrelevant except that larger values are assumed to correspond to “higher” outcomes.
The conditional distribution of the response given the random effects is assumed to be multinomial,
with success probability determined by the logistic cumulative distribution function.

Options

Model

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern(matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.
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covariance (fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, ) and (k,!) are constrained to be equal if matnameli, j| = matnamel[k,1].

noconstant suppresses the constant (intercept) term; may be specified for any or all of the random-
effects equations.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] estimation options.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(/3) rather than .
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents meologit from performing a likelihood-ratio test that compares the mixed-effects
ordered logistic model with standard (marginal) ordered logistic regression. This option may also
be specified upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint), sformat (%fmt), and
nolstretch; see [R] estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.
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For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for meologit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meologit but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)], noestimate, and dnumerical; see [ME]
meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

meologit is a convenience command for meglm with a logit link and an ordinal family; see
[ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models

Introduction

Mixed-effects ordered logistic regression is ordered logistic regression containing both fixed effects
and random effects. An ordered response is a variable that is categorical and ordered, for instance,
“poor”, “good”, and “excellent”’, which might indicate a person’s current health status or the repair
record of a car. In the absence of random effects, mixed-effects ordered logistic regression reduces

to ordered logistic regression; see [R] ologit.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skro-
ndal (2012). Agresti (2010, chap. 10) and Rabe-Hesketh and Skrondal (2012, chap. 11) are good
introductory readings on applied multilevel modeling of ordinal data.
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meologit allows for many levels of nested clusters of random effects. For example, in a three-level
model you can specify random effects for schools and then random effects for classes nested within
schools. In this model, the observations (presumably, the students) comprise the first level, the classes
comprise the second level, and the schools comprise the third.

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of fixed effects X;;, a set of cutpoints «, and a set of
random effects u;, the cumulative probability of the response being in a category higher than k is

Pl‘(yij > k‘Xij, K, Uj) = H(Xij,a + z;;u; — /ik) (1)
for j = 1,..., M clusters, with cluster j consisting of ¢ = 1,...,n; observations. The cutpoints K
are labeled K1, Ko, ..., KKk—1, where K is the number of possible outcomes. H(-) is the logistic

cumulative distribution function that represents cumulative probability.

The 1 x p row vector X;; are the covariates for the fixed effects, analogous to the covariates
you would find in a standard logistic regression model, with regression coefficients (fixed effects)
B. In our parameterization, X;; does not contain a constant term because its effect is absorbed into
the cutpoints. For notational convenience here and throughout this manual entry, we suppress the
dependence of y;; on X;;.

The 1 X g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean 0 and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;;, so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

From (1), we can derive the probability of observing outcome & as

Pf(yij = k|n,uj) = Pr(ﬂk,1 < Xijﬂ"‘ Zi;u; + €j < Iik)
= Pr(ﬁk_l — Xijﬂ — Z;;u; < €5 < K — Xij,B — Zijuj')
= H(k) —xi;8 — ziju;) — H(kr—1 — X8 — zi515)
where kg is taken as —oo and Ky is taken as +o0.

From the above, we may also write the model in terms of a latent linear response, where observed
ordinal responses y;; are generated from the latent continuous responses, such that

* o

Yij = XijB + 2iju; + €

and
K1

R2

1 if y;‘j
2 if R < y;‘j

INIA

K if rRrg—1 < y;}

The errors €;; are distributed as logistic with mean 0 and variance 72 /3 and are independent of u;.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
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is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in the Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

meologit supports three types of Gauss—Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects ordered logistic regression; refer to
[ME] melogit for additional examples including crossed random-effects models and to [ME] me and
[ME] meglm for examples of other random-effects models.

Two-level models

We begin with a simple application of (1) as a two-level model, because a one-level model, in our
terminology, is just standard ordered logistic regression; see [R] ologit.

> Example 1

We use the data from the Television, School, and Family Smoking Prevention and Cessation Project
(Flay et al. 1988; Rabe-Hesketh and Skrondal 2012, chap. 11), where schools were randomly assigned
into one of four groups defined by two treatment variables. Students within each school are nested in
classes, and classes are nested in schools. In this example, we ignore the variability of classes within
schools and fit a two-level model; we incorporate classes in a three-level model in example 2. The
dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered
categories. We regress the outcome on the treatment variables and their interaction and control for
the pretreatment score.
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. use http://www.stata-press.com/data/r13/tvsfpors
. meologit thk prethk cc##tv || school:

Fitting fixed-effects model:

Iteration 0: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509
Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032
Refining starting values:

Grid node O: log likelihood = -2136.2426

Fitting full model:

Iteration 0: log likelihood = -2136.2426 (not concave)
Iteration 1: log likelihood = -2120.2577
Iteration 2: log likelihood = -2119.7574

Iteration 3: log likelihood = -2119.7428
Iteration 4: log likelihood = -2119.7428

Mixed-effects ologit regression Number of obs = 1600
Group variable: school Number of groups = 28
Obs per group: min = 18
avg = 57.1
max = 137
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 128.06
Log likelihood = -2119.7428 Prob > chi2 = 0.0000
thk Coef. Std. Err. z P>|z| [95% Conf. Intervall
prethk .4032892 .03886 10.38  0.000 .327125 .4794534
1l.cc .9237904 .204074 4.53 0.000 .5238127 1.323768
1.tv .2749937 .1977424 1.39 0.164 -.1125744 .6625618

cc#tv
11 -.4659256 .2845963 -1.64 0.102 -1.023724 .0918728
/cutl -.0884493 .1641062 -0.54 0.590 -.4100916 .233193
/cut2 1.153364 .165616 6.96 0.000 .8287625 1.477965
/cut3 2.33195 .1734199 13.45 0.000 1.992053 2.671846

school

var (_cons) .0735112 .0383106 .0264695 .2041551
LR test vs. ologit regression: chibar2(01) = 10.72 Prob>=chibar2 = 0.0005

Those of you familiar with the mixed command or other me commands will recognize the syntax
and output. Below we comment on the items specific to ordered outcomes.

1. The estimation table reports the fixed effects, the estimated cutpoints (K1, k2, £3), and the estimated
variance components. The fixed effects can be interpreted just as you would the output from ologit.
We find that students with higher preintervention scores tend to have higher postintervention scores.
Because of their interaction, the impact of the treatment variables on the knowledge score is not
straightforward; we defer this discussion to example 1 of [ME] meologit postestimation. You can
also specify the or option at estimation or on replay to display the fixed effects as odds ratios
instead.

2. Underneath the fixed effects and the cutpoints, the table shows the estimated variance components.
The random-effects equation is labeled school, meaning that these are random effects at the school
level. Because we have only one random effect at this level, the table shows only one variance
component. The estimate of o2 is 0.07 with standard error 0.04. The reported likelihood-ratio test
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shows that there is enough variability between schools to favor a mixed-effects ordered logistic
regression over a standard ordered logistic regression; see Distribution theory for likelihood-ratio
test in [ME] me for a discussion of likelihood-ratio testing of variance components.

We now store our estimates for later use.

. estimates store r_2 q

Three-level models
Two-level models extend naturally to models with three or more levels with nested random effects.
Below we continue with example 1.

> Example 2

In this example, we fit a three-level model incorporating classes nested within schools as an
additional level. The fixed-effects part remains the same.
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. meologit thk prethk cc##tv || school: || class:
Fitting fixed-effects model:

Iteration O: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509

Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032

Refining starting values:

Grid node O: log likelihood = -2152.1514

Fitting full model:

Iteration 0: log likelihood = -2152.1514 (not concave)

Iteration 1 log likelihood = -2125.9213 (not concave)
Iteration 2: log likelihood = -2120.1861
Iteration 3: log likelihood = -2115.6177
Iteration 4: log likelihood = -2114.5896
Iteration 5 log likelihood = -2114.5881

Iteration 6: log likelihood = -2114.5881

Mixed-effects ologit regression Number of obs = 1600
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000
thk Coef. Std. Err. z P>|z| [95% Conf. Intervall
prethk .4085273 .039616 10.31  0.000 .3308814 .4861731
1l.cc . 8844369 .2099124 4.21  0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15  0.249 -.1651614 .6380575
ccH#tv
11 -.3717699 .2958887 -1.26  0.209 -.951701 .2081612
/cutl -.0959459 .1688988 -0.57 0.570 -.4269815 .2350896
/cut2 1.177478 .1704946 6.91 0.000 .8433151 1.511642
/cut3 2.383672 .1786736 13.34 0.000 2.033478 2.733865
school
var (_cons) .0448735 .0425387 .0069997 .2876749
school>class
var (_cons) .1482157 .0637521 .063792 .3443674
LR test vs. ologit regression: chi2(2) = 21.03  Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meologit
assumes that class is nested within school.
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2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header as well.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

Compared with the two-level model from example 1, the estimate of the variance of the random
intercept at the school level dropped from 0.07 to 0.04. This is not surprising because we now use two
random components versus one random component to account for unobserved heterogeneity among
students. We can use lrtest and our stored estimation result from example 1 to see which model
provides a better fit:

. lrtest r_2 .
Likelihood-ratio test LR chi2(1) = 10.31
(Assumption: r_2 nested in .) Prob > chi2 = 0.0013

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The likelihood-ratio test favors the three-level model. For more information about the likelihood-ratio
test in the context of mixed-effects models, see Distribution theory for likelihood-ratio test in [ME] me.

4

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results

meologit stores the following in e():

e(converged)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_cat) number of categories
e(k_eq) number of equations in e(b)
e(k_eq_model) number of equations in overall model test
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) x*
e(p) significance
e(ll_c) log likelihood, comparison model
e(chi2_c) x?, comparison model
e(df_c) degrees of freedom, comparison model
e(p_c) significance, comparison model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code

1 if converged, O otherwise
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Macros
e(cmd) meologit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(ivars) grouping variables
e (model) ologit
e(title) title in estimation output
e(link) logit
e(family) ordinal
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n_quad) number of integration points
e(chi2type) Wald; type of model x?
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g_min) group-size minimums
e(g_avg) group-size averages
e(g-_max) group-size maximums
e(V) variance—covariance matrix of the estimator
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas

Without a loss of generality, consider a two-level ordered logistic model. The probability of
observing outcome k for response ¥;; is then

pij = Pr(yi; = klr,u;) = Pr(sr—1 < my; + e < ki)
1 1
1 +exp(—kg +m;;) 1+ exp(—rg—1+n;)

where Nij = x;iB + z;ju; + offset;;, Ko is taken as —oo, and Kk is taken as +o0o. Here x;; does
not contain a constant term because its effect is absorbed into the cutpoints.

For cluster j, j = 1,..., M, the conditional distribution of y; = (y;1,...,¥;n;) given a set of
cluster-level random effects u; is
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vy

Tx (yij
f(yjle,u;) = Hpif(y :
i=1
- expz {[k(yij) log(Pij)}
i=1
where
1 ify; =k

I (yiz) :{

0 otherwise

Because the prior distribution of u; is multivariate normal with mean 0 and ¢ X g variance matrix
X, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density

flyj ),
L;(B,k, %) = (2r)” Y2 |z|*1/2/f(yj|n7uj)exp (—ugz—luj/2) du;
= (2 2277 [ exp (1 (8,5,

where

n;
h(Bk, B ;)= {fk(yij) log(pij)} —ujE /2
i=1
and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(¥, 15, X5, Zy).
The integration in (2) has no closed form and thus must be approximated. meologit offers
four approximation methods: mean—variance adaptive Gauss—Hermite quadrature (default unless a

crossed random-effects model is fit), mode-curvature adaptive Gauss—Hermite quadrature, nonadaptive
Gauss—Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of h (3, k, ¥, u;) about
the value of u; that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, £(3, K, X) = Zjle L;(B,k,%).

Maximization of £(3, k, X) is performed with respect to (3, &, o?), where o is a vector comprising

the unique elements of ¥. Parameter estimates are stored in e (b) as (3, &, ), with the corresponding
variance—covariance matrix stored in e (V).
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Title

meologit postestimation — Postestimation tools for meologit

Description Syntax for predict Menu for predict

Options for predict Syntax for estat group Menu for estat

Remarks and examples Methods and formulas Also see
Description

The following postestimation command is of special interest after meologit:

Command

Description

estat group

summarize the composition of the nested groups

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce
estimates
lincom

Irtest
margins

marginsplot
nlcom

predict
predictnl

pwcompare
test
testnl

summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

cataloging estimation results

point estimates, standard errors, testing, and inference for linear
combinations of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.

155
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Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [zf] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [type] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description
Main
pTr predicted probabilities; the default
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset variable in calculating predictions; relevant only
if you specified offset () when you fit the model
fixedonly prediction for the fixed portion of the model only

outcome (outcome)  outcome category for predicted probabilities

Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance(#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

You specify one or k new variables in newvarlist with pr, where k is the number of outcomes. If you
do not specify outcome(), those options assume outcome (#1).

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict
Main

Is

remeans, remodes, reses(); see [ME] meglm postestimation.

pr, the default, calculates the predicted probabilities. By default, the probabilities are based on a
linear predictor that includes both the fixed effects and the random effects, and the predicted
probabilities are conditional on the values of the random effects. Use the fixedonly option if
you want predictions that include only the fixed portion of the model, that is, if you want random
effects set to 0.

You specify one or k new variables, where k is the number of categories of the dependent variable.
If you specify the outcome () option, the probabilities will be predicted for the requested outcome
only, in which case you specify only one new variable. If you specify one new variable and do
not specify outcome (), outcome (#1) is assumed.

fitted, xb, stdp, means, modes, nooffset, fixedonly; see [ME] meglm postestimation.

By default or if the means option is specified, statistics pr, fitted, xb, and stdp are based on
the posterior mean estimates of random effects. If the modes option is specified, these statistics
are based on the posterior mode estimates of random effects.

outcome (outcome) specifies the outcome for which the predicted probabilities are to be calculated.
outcome () should contain either one value of the dependent variable or one of #1, #2, ..., with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

Syntax for estat group

estat group

Menu for estat

Statistics > Postestimation > Reports and statistics

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting an ordered logistic
mixed-effects model with meologit. Here we show a short example of predicted probabilities and
predicted random effects; refer to [ME] meglm postestimation for additional examples applicable to
mixed-effects generalized linear models.
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> Example 1

In example 2 of [ME] meologit, we modeled the tobacco and health knowledge (thk) score—coded
1, 2, 3, 4—among students as a function of two treatments (cc and tv) by using a three-level ordered
logistic model with random effects at the school and class levels.

. use http://www.stata-press.com/data/r13/tvsfpors
. meologit thk prethk cc##tv || school: || class:
(output omitted )

We obtain predicted probabilities for all four outcomes based on the contribution of both fixed
effects and random effects by typing
. predict prx*
(predictions based on fixed effects and posterior means of random effects)

(option mu assumed)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.

Because we specified a stub name, Stata saved the predicted random effects in variables pri
through pr4. Here we list the predicted probabilities for the first two classes for school 515:

. list class thk pr? if school==515 & (class==515101 | class==515102),
> sepby(class)

class  thk pril pr2 pr3 pré
1464. 515101 2 .1485538 .2354556 .2915916 .3243991
1465. 515101 2 .372757 .3070787 .1966117 .1235526
1466. 515101 1 .372757 .3070787 .1966117 .1235526
1467. 515101 4 .2831409 .3021398 .2397316 .1749877
1468. 515101 3 .2079277 .2760683 .2740791 .2419248
1469. 515101 3 .2831409 .3021398 .2397316 .1749877
1470. 515102 1 .3251654 .3074122 .2193101 .1481123
1471. 515102 2 .4202843 .3011963 .1749344 .103585
1472. 515102 2 .4202843 .3011963 .1749344 .103585
1473. 515102 2 .4202843 .3011963 .1749344 .103585
1474. 515102 2 .3251654 .3074122 .2193101 .1481123
1475. 515102 1 .4202843 .3011963 .1749344 .103585
1476. 515102 2 .3251654 .3074122 .2193101 .1481123

For each observation, our best guess for the predicted outcome is the one with the highest predicted
probability. For example, for the very first observation in the table above, we would choose outcome 4
as the most likely to occur.

We obtain predictions of the posterior means themselves at the school and class levels by typing

. predict re_s re_c, remeans
(calculating posterior means of random effects)
(using 7 quadrature points)
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Here we list the predicted random effects for the first two classes for school 515:

. list class re_s re_c if school==515 & (class==515101 | class==515102),
> sepby(class)

class re_s re_c
1464. 515101 -.0473739 .0633081
1465. 515101 -.0473739 .0633081
1466. 515101 -.0473739 .0633081
1467. 515101 -.0473739 .0633081
1468. 515101 -.0473739 .0633081
1469. 515101 -.0473739 .0633081
1470. 515102 -.0473739 -.1354929
1471. 515102 -.0473739 -.1354929
1472. 515102 -.0473739 -.1354929
1473. 515102 -.0473739 -.1354929
1474. 515102 -.0473739 -.1354929
1475. 515102 -.0473739 -.1354929
1476. 515102 -.0473739 -.1354929

We can see that the predicted random effects at the school level (re_s) are the same for all classes
and that the predicted random effects at the class level (re_c) are constant within each class.

4

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.

Also see
[ME] meologit — Multilevel mixed-effects ordered logistic regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

meoprobit — Multilevel mixed-effects ordered probit regression

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
meoprobit depvar fe_equation [ |l re_equation] [ || re_equation ... ] [, options]

where the syntax of fe_equation is
[indepvars] [if ] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
offset (varname) include varname in model with coefficient constrained to 1
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation

160
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options

Description

Model
constraints (constraints)
collinear

SE/Robust
vce (veetype)

Reporting

level (#)
nocnsreport
notable
noheader
nogroup
nolrtest

display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

apply specified linear constraints
keep collinear variables

vcetype may be oim, robust, or cluster clustvar

set confidence level; default is 1level (95)
do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

do not perform likelihood-ratio test comparing with ordered probit
regression

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method

set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Ordered probit regression

Description

meoprobit fits mixed-effects probit models for ordered responses. The actual values taken on by
the response are irrelevant except that larger values are assumed to correspond to “higher” outcomes.
The conditional distribution of the response given the random effects is assumed to be multinomial,
with success probability determined by the standard normal cumulative distribution function.

Options

Model

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern(matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.
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covariance (fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, ) and (k,!) are constrained to be equal if matnameli, j| = matnamel[k,1].

noconstant suppresses the constant (intercept) term; may be specified for any or all of the random-
effects equations.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#), nocnsreport; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents meoprobit from performing a likelihood-ratio test that compares the mixed-effects
ordered probit model with standard (marginal) ordered probit regression. This option may also be
specified upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (%fmt), pformat (%fint), sformat (% fint), and
nolstretch; see [R] estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.
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intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for meoprobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meoprobit but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)], noestimate, and dnumerical; see [ME]
meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

meoprobit is a convenience command for meglm with a probit link and an ordinal family;
see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models

Introduction

Mixed-effects ordered probit regression is ordered probit regression containing both fixed effects
and random effects. An ordered response is a variable that is categorical and ordered, for instance,
“poor”, “good”, and “excellent”, which might indicate a person’s current health status or the repair
record of a car. In the absence of random effects, mixed-effects ordered probit regression reduces to

ordered probit regression; see [R] oprobit.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skro-
ndal (2012). Agresti (2010, chap. 10) and Rabe-Hesketh and Skrondal (2012, chap. 11) are good
introductory readings on applied multilevel modeling of ordinal data.

meoprobit allows for many levels of nested clusters of random effects. For example, in a three-
level model you can specify random effects for schools and then random effects for classes nested
within schools. In this model, the observations (presumably, the students) comprise the first level, the
classes comprise the second level, and the schools comprise the third.



meoprobit — Multilevel mixed-effects ordered probit regression 165

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of fixed effects x;;, a set of cutpoints «, and a set of
random effects u;, the cumulative probability of the response being in a category higher than k is

Pr(yij > k‘|Xij, K, llj) = (I)(Xijﬂ =+ Ziju; — K,k) (1)
for j = 1,..., M clusters, with cluster j consisting of 7 = 1,...,n; observations. The cutpoints
are labeled k1, Ko, ..., Kx—1, where K is the number of possible outcomes. ®(-) is the standard

normal cumulative distribution function that represents cumulative probability.

The 1 X p row vector X;; are the covariates for the fixed effects, analogous to the covariates you
would find in a standard probit regression model, with regression coefficients (fixed effects) 3. In our
parameterization, X;; does not contain a constant term because its effect is absorbed into the cutpoints.
For notational convenience here and throughout this manual entry, we suppress the dependence of
Yij on X;j;.

The 1 x g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean 0 and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = x;; so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

From (1), we can derive the probability of observing outcome k as

Pr(yij = ]{3|I<L,Uj) = Pr(ﬂk_1 < Xij16+ Z;jU; + €5 < Hk)
= PI‘(K]C,1 — Xijﬁ — Ziju; < €5 < K — Xij,B — zijuj)
= ®(kr — xi58 — ziju;) — P(kk—1 — Xi; 8 — zi51u;)
where kg is taken as —oo and kg is taken as +oo.
From the above, we may also write the model in terms of a latent linear response, where observed
ordinal responses y;; are generated from the latent continuous responses, such that
Yij = XijB + 2y + €
and . *
1 if Yij
: *
2 if K1 < Yij

R1
K2

INIA

K if Rrg—1 < yfj

The errors ¢;; are distributed as standard normal with mean O and variance 1 and are independent of
u;.

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in the Introduction, for more
information.
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Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

meoprobit supports three types of Gauss—Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects ordered probit regression; refer to [ME] mel-
ogit for additional examples including crossed random-effects models and to [ME] me and [ME] meglm
for examples of other random-effects models.

Two-level models

We begin with a simple application of (1) as a two-level model, because a one-level model, in our
terminology, is just standard ordered probit regression; see [R] oprobit.

> Example 1

We use the data from the Television, School, and Family Smoking Prevention and Cessation Project
(Flay et al. 1988; Rabe-Hesketh and Skrondal 2012, chap. 11), where schools were randomly assigned
into one of four groups defined by two treatment variables. Students within each school are nested in
classes, and classes are nested in schools. In this example, we ignore the variability of classes within
schools and fit a two-level model; we incorporate classes in a three-level model in example 2. The
dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered
categories. We regress the outcome on the treatment variables and their interaction and control for
the pretreatment score.
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. use http://www.stata-press.com/data/r13/tvsfpors
. meoprobit thk prethk cc##tv || school:
Fitting fixed-effects model:

Iteration O: log likelihood = -2212.775
Iteration 1: log likelihood = -2127.8111
Iteration 2: log likelihood = -2127.7612
Iteration 3: log likelihood = -2127.7612

Refining starting values:
Grid node O: log likelihood = -2149.7302
Fitting full model:

Iteration O: log likelihood = -2149.7302 (not concave)
Iteration 1: log likelihood = -2129.6838 (not concave)
Iteration 2: log likelihood = -2123.5143
Iteration 3: log likelihood = -2122.2896
Iteration 4: log likelihood = -2121.7949
Iteration 5: log likelihood = -2121.7716
Iteration 6: log likelihood = -2121.7715

Mixed-effects oprobit regression Number of obs = 1600
Group variable: school Number of groups = 28
Obs per group: min = 18
avg = 57.1
max = 137
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 128.05
Log likelihood = -2121.7715 Prob > chi2 = 0.0000
thk Coef.  Std. Err. z P>|z| [95% Conf. Intervall
prethk .2369804 .0227739 10.41  0.000 .1923444 .2816164
1l.cc .5490957 .1255108 4.37 0.000 .303099 .7950923
1.tv .1695405 .1215889 1.39 0.163 -.0687693 .4078504

cc#tv
11 -.2951837 .1751969 -1.68 0.092 -.6385634 .0481959
/cutl -.0682011 .1003374 -0.68  0.497 -.2648587 .1284565
/cut2 .67681 .1008836 6.71  0.000 .4790817 .8745382
/cut3 1.390649 .1037494 13.40 0.000 1.187304 1.593995

school

var (_cons) .0288527 .0146201 .0106874 .0778937
LR test vs. oprobit regression: chibar2(01) = 11.98 Prob>=chibar2 = 0.0003

Those of you familiar with the mixed command or other me commands will recognize the syntax
and output. Below we comment on the items specific to ordered outcomes.

1. The estimation table reports the fixed effects, the estimated cutpoints (ki, ke, k3), and the
estimated variance components. The fixed effects can be interpreted just as you would the output
from oprobit. We find that students with higher preintervention scores tend to have higher
postintervention scores. Because of their interaction, the impact of the treatment variables on the
knowledge score is not straightforward; we defer this discussion to example 1 of [ME] meoprobit
postestimation.

2. Underneath the fixed effects and the cutpoints, the table shows the estimated variance components.
The random-effects equation is labeled school, meaning that these are random effects at the school
level. Because we have only one random effect at this level, the table shows only one variance
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component. The estimate of o2 is 0.03 with standard error 0.01. The reported likelihood-ratio test
shows that there is enough variability between schools to favor a mixed-effects ordered probit
regression over a standard ordered probit regression; see Distribution theory for likelihood-ratio
test in [ME] me for a discussion of likelihood-ratio testing of variance components.

We now store our estimates for later use.

. estimates store r_2 q

Three-level models
Two-level models extend naturally to models with three or more levels with nested random effects.
Below we continue with example 1.

> Example 2

In this example, we fit a three-level model incorporating classes nested within schools as an
additional level. The fixed-effects part remains the same.
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. meoprobit thk prethk cc##tv || school: || class:
Fitting fixed-effects model:

Iteration O: log likelihood = -2212.775
Iteration 1: log likelihood = -2127.8111
Iteration 2: log likelihood = -2127.7612
Iteration 3: log likelihood = -2127.7612

Refining starting values:
Grid node O: log likelihood = -2195.6424
Fitting full model:

Iteration 0: log likelihood = -2195.6424 (not concave)
Iteration 1: log likelihood = -2167.9576 (not concave)
Iteration 2: log likelihood = -2140.2644 (not concave)
Iteration 3: log likelihood = -2128.6948 (not concave)
Iteration 4: log likelihood = -2119.9225
Iteration 5: log likelihood = -2117.0947
Iteration 6: log likelihood = -2116.7004
Iteration 7: log likelihood = -2116.6981

Iteration 8: log likelihood = -2116.6981

Mixed-effects oprobit regression Number of obs = 1600
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 124.20
Log likelihood = -2116.6981 Prob > chi2 = 0.0000
thk Coef . Std. Err. z P>|z| [95% Conf. Intervall
prethk .238841 .0231446 10.32  0.000 .1934784 .2842036
1l.cc .5254813 .1285816 4.09 0.000 .2734659 LTT74967
1.tv .1455573 .12556827 1.16 0.246 -.1005803 .3916949
cc#tv
11 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251
/cutl -.074617 .1029791 -0.72  0.469 -.2764523 .1272184
/cut2 .6863046 .1034813 6.63 0.000 .4834849 .8891242
/cut3 1.413686 .1064889 13.28  0.000 1.204972 1.622401
school
var (_cons) .0186456 .0160226 .0034604 .1004695
school>class
var (_cons) .0519974 .0224014 .0223496 .1209745
LR test vs. oprobit regression: chi2(2) = 22.13  Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the
class level (level two). The order in which these are specified (from left to right) is significant—
meoprobit assumes that class is nested within school.
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2.

The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header as well.

. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

Compared with the two-level model from example 1, the estimate of the random intercept at the

school level dropped from 0.03 to 0.02. This is not surprising because we now use two random
components versus one random component to account for unobserved heterogeneity among students.
We can use 1rtest and our stored estimation result from example 1 to see which model provides a

better fit:
. lrtest r_2 .
Likelihood-ratio test LR chi2(1) = 10.15
(Assumption: r_2 nested in .) Prob > chi2 = 0.0014

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is comnservative.

The likelihood-ratio test favors the three-level model. For more information about the likelihood-

ratio test in the context of mixed-effects models, see Distribution theory for likelihood-ratio test in
[ME] me.

q

The above extends to models with more than two levels of nesting in the obvious manner, by

adding more random-effects equations, each separated by | |. The order of nesting goes from left to

right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results

e(k_eq_model)
e(k_f)

meoprobit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_cat) number of categories
e(k_eq) number of equations in e(b)

number of equations in overall model test
number of fixed-effects parameters

e(k_r) number of random-effects parameters
e(k_rs) number of variances

e(k_rc) number of covariances

e(df_m) model degrees of freedom

e(11) log likelihood

e(N_clust) number of clusters

e(chi2) x*

e(p) significance

e(1l_c) log likelihood, comparison model
e(chi2_c) x?2, comparison model

e(df_c) degrees of freedom, comparison model
e(p-c) significance, comparison model
e(rank) rank of e(V)

e(ic) number of iterations

e(rc) return code

e(converged)

1 if converged, O otherwise
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Macros

e(cmd) meoprobit

e(cmdline) command as typed

e(depvar) name of dependent variable

e(covariates) list of covariates

e(ivars) grouping variables

e (model) oprobit

e(title) title in estimation output

e(link) probit

e(family) ordinal

e(clustvar) name of cluster variable

e(offset) offset

e(intmethod) integration method

e(n_quad) number of integration points

e(chi2type) Wald; type of model x?

e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. Err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml_method) type of m1 method

e(user) name of likelihood-evaluator program

e(technique)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)

maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat

variance—covariance matrix of the estimator

e(predict) program used to implement predict
Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(N_g) group counts

e(g_min) group-size minimums

e(g_avg) group-size averages

e(g_max) group-size maximums

e (V)

e(V_modelbased) model-based variance
Functions

e(sample) marks estimation sample

Methods and formulas

Without a loss of generality, consider a two-level ordered probit model. The probability of observing

outcome £ for response y;; is then

pij = Pr(yi; = klk,u;) = Pr(kk—1 < m;; + € < Ky)

= O(ry, — 771'3') — O(kp—1 — mj)

where ;= x;iB + z;ju; + offset;;, Ko is taken as —oo, and Kk is taken as +oo. Here x;; does
not contain a constant term because its effect is absorbed into the cutpoints.

For cluster j, j = 1,..., M, the conditional distribution of y; = (y,1,. ..

cluster-level random effects u; is

,Yjn,)" given a set of
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nj
I 19
H p”k (y ])
i=1

= expi {Ik(ylj) log(pij)}

f(yjluy)

where
1 if Yij = k
0 otherwise

I (yi5) :{

Because the prior distribution of u; is multivariate normal with mean 0 and ¢ X ¢ variance matrix
X, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density

f(yj.u5),

L;(B,k, %) = (2m)79/? |2|71/2/f(yg'|'<7“j)exp (—uj2'u;/2) du;

- (277)_‘1/2 |E|71/2/exp{h (B, Kk, 2, u;)} du;

where
nj

h (IBaK’a 27uj) = Z {Ik(ylj) log(plj)} - u;’E_luj/Q

i=1

and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(yjarjvxjvzj)'

The integration in (2) has no closed form and thus must be approximated. meoprobit offers
four approximation methods: mean—variance adaptive Gauss—Hermite quadrature (default unless a
crossed random-effects model is fit), mode-curvature adaptive Gauss—Hermite quadrature, nonadaptive
Gauss—Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of h (3, k, X, u;) about
the value of u; that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual

M
clusters, namely, £L(3, K, %) = ijl Li(B,k,%).

2

Maximization of £(3, k, X) is performed with respect to (3, &, o?), where o is a vector comprising

the unique elements of . Parameter estimates are stored in e (b) as (3, K, 3'2), with the corresponding
variance—covariance matrix stored in e (V).
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Title

meoprobit postestimation — Postestimation tools for meoprobit

Description Syntax for predict Menu for predict

Options for predict Syntax for estat group Menu for estat

Remarks and examples Methods and formulas Also see
Description

The following postestimation command is of special interest after meoprobit:

Command

Description

estat group

summarize the composition of the nested groups

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce
estimates
lincom

Irtest
margins

marginsplot
nlcom

predict
predictnl

pwcompare
test
testnl

summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

cataloging estimation results

point estimates, standard errors, testing, and inference for linear
combinations of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.
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Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [zf] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [type] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description
Main
pTr predicted probabilities; the default
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset variable in calculating predictions; relevant only
if you specified offset () when you fit the model
fixedonly prediction for the fixed portion of the model only

outcome (outcome)  outcome category for predicted probabilities

Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance(#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

You specify one or k new variables in newvarlist with pr, where k is the number of outcomes. If you
do not specify outcome(), those options assume outcome (#1).

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict
Main

Is

remeans, remodes, reses(); see [ME] meglm postestimation.

pr, the default, calculates the predicted probabilities. By default, the probabilities are based on a
linear predictor that includes both the fixed effects and the random effects, and the predicted
probabilities are conditional on the values of the random effects. Use the fixedonly option if
you want predictions that include only the fixed portion of the model, that is, if you want random
effects set to 0.

You specify one or k new variables, where k is the number of categories of the dependent variable.
If you specify the outcome () option, the probabilities will be predicted for the requested outcome
only, in which case you specify only one new variable. If you specify one new variable and do
not specify outcome (), outcome (#1) is assumed.

fitted, xb, stdp, means, modes, nooffset, fixedonly; see [ME] meglm postestimation.

By default or if the means option is specified, statistics pr, fitted, xb, and stdp are based on
the posterior mean estimates of random effects. If the modes option is specified, these statistics
are based on the posterior mode estimates of random effects.

outcome (outcome) specifies the outcome for which the predicted probabilities are to be calculated.
outcome () should contain either one value of the dependent variable or one of #1, #2, ..., with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

Syntax for estat group

estat group

Menu for estat

Statistics > Postestimation > Reports and statistics

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting an ordered probit
mixed-effects model using meoprobit. Here we show a short example of predicted probabilities and
predicted random effects; refer to [ME] meglm postestimation for additional examples applicable to
mixed-effects generalized linear models.
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> Example 1

In example 2 of [ME] meoprobit, we modeled the tobacco and health knowledge (thk) score—
coded 1, 2, 3, 4—among students as a function of two treatments (cc and tv) using a three-level
ordered probit model with random effects at the school and class levels.

. use http://www.stata-press.com/data/r13/tvsfpors
. meoprobit thk prethk cc##tv || school: || class:
(output omitted )

We obtain predicted probabilities for all four outcomes based on the contribution of both fixed
effects and random effects by typing
. predict prx*
(predictions based on fixed effects and posterior means of random effects)

(option mu assumed)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.

Because we specified a stub name, Stata saved the predicted random effects in variables pri
through pr4. Here we list the predicted probabilities for the first two classes for school 515:

. list class thk pr? if school==515 & (class==515101 | class==515102),
> sepby(class)

class  thk pril pr2 pr3 pré
1464. 515101 2 .1503512 .2416885 .2828209 .3251394
1465. 515101 2 .3750887 .2958534 .2080368 .121021
1466. 515101 1 .3750887 .2958534 .2080368 .121021
1467. 515101 4 .2886795 .2920168 .2433916 .1759121
1468. 515101 3 .2129906 .2729831 .2696254 .2444009
1469. 515101 3 .2886795 .2920168 .2433916 .1759121
1470. 515102 1 .3318574 .2959802 .2261095 .1460529
1471. 515102 2 .4223251 .2916287 .187929 .0981172
1472. 515102 2 .4223251 .2916287 .187929 .0981172
1473. 515102 2 .4223251 .2916287 .187929 .0981172
1474. 515102 2 .3318574 .2959802 .2261095 .1460529
1475. 515102 1 .4223251 .2916287 .187929 .0981172
1476. 515102 2 .3318574 .2959802 .2261095 .1460529

For each observation, our best guess for the predicted outcome is the one with the highest predicted
probability. For example, for the very first observation in the table above, we would choose outcome 4
as the most likely to occur.

We obtain predictions of the posterior means themselves at the school and class levels by typing

. predict re_s re_c, remeans
(calculating posterior means of random effects)
(using 7 quadrature points)
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Here we list the predicted random effects for the first two classes for school 515:

. list class re_s re_c if school==515 & (class==515101 | class==515102),
> sepby(class)

class re_s re_c
1464. 515101 -.0340769 .0390243
1465. 515101 -.0340769 .0390243
1466. 515101 -.0340769 .0390243
1467. 515101 -.0340769 .0390243
1468. 515101 -.0340769 .0390243
1469. 515101 -.0340769 .0390243
1470. 515102 -.0340769 -.0834322
1471. 515102 -.0340769 -.0834322
1472. 515102 -.0340769 -.0834322
1473. 515102 -.0340769 -.0834322
1474. 515102 -.0340769 -.0834322
1475. 515102 -.0340769 -.0834322
1476. 515102 -.0340769 -.0834322

We can see that the predicted random effects at the school level (re_s) are the same for all classes
and that the predicted random effects at the class level (re_c) are constant within each class.

4

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.

Also see
[ME] meoprobit — Multilevel mixed-effects ordered probit regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

mepoisson — Multilevel mixed-effects Poisson regression

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
mepoisson depvar fe_equation [ |l re_equation] [ || re_equation ... ] [ , options]

where the syntax of fe_equation is
[indepvars] [if ] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
noconstant suppress the constant term from the fixed-effects equation
exposure (varname,) include In(varname,.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
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display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

options Description
Model
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE/Robust
vce (veetype) vcetype may be oim, robust, or cluster clustvar
Reporting
level (#) set confidence level; default is 1level (95)
irr report fixed-effects coefficients as incidence-rate ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with Poisson

regression

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method

set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Poisson regression

Description

mepoisson fits mixed-effects models for count responses. The conditional distribution of the
response given the random effects is assumed to be Poisson.

mepoisson performs optimization with the original metric of variance components. When variance
components are near the boundary of the parameter space, you may consider using the meqrpoisson
command, which provides alternative parameterizations of variance components; see [ME]| meqrpoisson.

Options
Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

exposure (varname,) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; In(varname.) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset (varname,) specifies that varname, be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern(matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.
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covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,7) is constrained to equal the
value specified in the 7, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, j) and (k,!) are constrained to be equal if matnameli, j| = mamamel[k,1].

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(/3)
rather than (. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents mepoisson from performing a likelihood-ratio test that compares the mixed-effects
Poisson model with standard (marginal) Poisson regression. This option may also be specified
upon replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint), sformat (%fmt), and
nolstretch; see [R] estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.
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The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize—options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for mepoisson are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mepoisson but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)], noestimate, and dnumerical; see [ME]
meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
A two-level model
A three-level model

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skro-
ndal (2012). Rabe-Hesketh and Skrondal (2012, chap. 13) is a good introductory read on applied
multilevel modeling of count data.
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mepoisson allows for not just one, but many levels of nested clusters. For example, in a three-level
model you can specify random effects for schools and then random effects for classes nested within
schools. In this model, the observations (presumably, the students) comprise the first level, the classes
comprise the second level, and the schools comprise the third level.

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of random effects u;,

Pr(yi; = ylxij, uj) = exp (—pij) 1} /y! (1)

for p;; = exp(xi;8 + z;5u;), j = 1,..., M clusters, with cluster j consisting of i = 1,...,n;
observations. The responses are counts y;;. The 1 X p row vector X;; are the covariates for the fixed
effects, analogous to the covariates you would find in a standard Poisson regression model, with
regression coefficients (fixed effects) 3. For notational convenience here and throughout this manual
entry, we suppress the dependence of y;; on X;;.

The 1 x g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean O and q X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;; so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

As noted in chapter 13.7 of Rabe-Hesketh and Skrondal (2012), the inclusion of a random intercept
causes the marginal variance of y;; to be greater than the marginal mean, provided the variance of
the random intercept is not 0. Thus the random intercept in a mixed-effects Poisson model produces
overdispersion, a measure of variability above and beyond that allowed by a Poisson process; see
[R] nbreg and [ME] menbreg.

Model (1) is a member of the class of generalized linear mixed models (GLMMs), which generalize
the linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in the Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

mepoisson supports three types of Gauss—Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects Poisson regression; refer to [ME] me and
[ME] meglm for additional examples including crossed random-effects models.
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A two-level model

We begin with a simple application of (1) as a two-level model, because a one-level model, in our
terminology, is just standard Poisson regression; see [R] poisson.

> Example 1

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of
the drug progabide for the treatment of epilepsy.
. use http://www.stata-press.com/data/r13/epilepsy
(Epilepsy data; progabide drug treatment)
. describe

Contains data from http://www.stata-press.com/data/r13/epilepsy.dta

obs: 236 Epilepsy data; progabide drug
treatment
vars: 8 31 May 2013 14:09
size: 4,956 (_dta has notes)
storage display value
variable name  type format label variable label
subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g 1: progabide; 0: placebo
visit float  %9.0g Dr. visit; coded as (-.3, -.1,
.1, .3)
lage float  %9.0g log(age) , mean-centered
lbas float  %9.0g log(0.25%baseline seizures),
mean-centered
lbas_trt float  %9.0g lbas/treat interaction
v4 byte %8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 progabide, 28
placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to
each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.
Data were also collected on the logarithm of age (1age) and the logarithm of one-quarter the number
of seizures during the eight weeks prior to the study (1bas). The variable 1bas_trt represents the
interaction between lbas and treatment. lage, lbas, and 1bas_trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator
v4 for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures,
log(,uu) = Fo + Bltreatij + Bglbasij + ﬂ31bas_trtij + ﬁ41ageij + ﬁ5v4,»j + u;

for j =1,...,59 subjects and s = 1,...,4 visits. The random effects u; are assumed to be normally
distributed with mean 0 and variance o2

w*
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. mepoisson seizures treat lbas lbas_trt lage v4 || subject:
Fitting fixed-effects model:

Iteration O: log likelihood = -1016.4106
Iteration 1: log likelihood = -819.20112
Iteration 2: log likelihood = -817.66006
Iteration 3: log likelihood = -817.65925
Iteration 4: log likelihood = -817.65925

Refining starting values:
Grid node O: log likelihood = -680.40523
Fitting full model:

Iteration 0: log likelihood = -680.40523 (not concave)
Iteration 1: log likelihood = -672.95766 (not concave)
Iteration 2: log likelihood = -667.14039
Iteration 3: log likelihood = -665.51823
Iteration 4: log likelihood = -665.29165
Iteration 5: log likelihood = -665.29067
Iteration 6: log likelihood = -665.29067

Mixed-effects Poisson regression Number of obs = 236

Group variable: subject Number of groups = 59

Obs per group: min = 4

avg = 4.0

max = 4

Integration method: mvaghermite Integration points = 7

Wald chi2(5) = 121.70

Log likelihood = -665.29067 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Intervall

treat -.9330306 .4007512 -2.33 0.020 -1.718489  -.1475727

lbas .8844225 .1312033 6.74 0.000 .6272689 1.141576

lbas_trt .3382561 .2033021 1.66 0.096 -.0602087 .736721

lage .4842226 .3471905 1.39 0.163 -.1962582 1.164703

véd -.1610871 .0545758 -2.95 0.003 -.26805636  -.0541206

_cons 2.154578 .2199928 9.79  0.000 1.7234 2.585756
subject

var (_cons) .2528664 .0589844 .1600801 .399434

LR test vs. Poisson regression: chibar2(01) = 304.74 Prob>=chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on
progabide demonstrate a decrease in frequency of seizures compared with the placebo group. The
subject-specific random effects also appear significant: 32 = 0.25 with standard error 0.06.

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.

N

A three-level model

mepoisson can also fit higher-level models with multiple levels of nested random effects.
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> Example 2

Rabe-Hesketh and Skrondal (2012, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971-1980.

. use http://www.stata-press.com/data/r13/melanoma
(Skin cancer (melanoma) data)
. describe

Contains data from http://localpress.stata.com/data/r13/melanoma.dta

obs: 354 Skin cancer (melanoma) data
vars: 6 30 May 2013 17:10

size: 4,956 (_dta has notes)

storage display value
variable name type format label variable label
nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III
areas

deaths int %9.0g No. deaths during 1971-1980
expected float  %9.0g No. expected deaths
uv float  %9.0g UV dose, mean-centered
Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being recorded
for each of 354 counties, which are level II or level III EEC-defined areas (variable county, which
identifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries.
Finally, the variable uv is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations
as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept
Poisson model,

log(pijr) = log(expected, ;) + Bo + Bruviji + uk + vjk

for nation k, region j, and county . The model includes an exposure term for expected deaths.
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. mepoisson deaths c.uv##c.uv, exposure(expected) || nation: || region:
Fitting fixed-effects model:

Iteration O: log likelihood = -2136.0274
Iteration 1: log likelihood = -1723.127
Iteration 2: log likelihood = -1722.9762
Iteration 3: log likelihood = -1722.9762

Refining starting values:
Grid node O: log likelihood = -1166.9773
Fitting full model:

Iteration 0: log likelihood = -1166.9773 (not concave)
Iteration 1: log likelihood = -1152.6069 (not concave)
Iteration 2: log likelihood = -1151.902 (not concave)
Iteration 3: log likelihood = -1127.412 (not concave)
Iteration 4: log likelihood = -1101.9248
Iteration 5: log likelihood = -1094.1984
Iteration 6: log likelihood = -1088.05
Iteration 7: log likelihood = -1086.9097
Iteration 8: log likelihood = -1086.8995
Iteration 9: log likelihood = -1086.8994
Mixed-effects Poisson regression Number of obs = 354
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
nation 9 3 39.3 95
region 78 1 4.5 13
Integration method: mvaghermite Integration points = 7
Wald chi2(2) = 25.70
Log likelihood = -1086.8994 Prob > chi2 = 0.0000
deaths Coef.  Std. Err. z P>|z| [95% Conf. Intervall
uv .0057002 .0137919 0.41 0.679 -.0213315 .0327318
c.uv#c.uv -.0058377 .0013879 -4.21  0.000 -.008558 -.0031174
_cons .1289989 .1581224 0.82 0.415 -.1809154 .4389132
1n(expected) 1 (exposure)
nation
var (_cons) .1841878 .0945722 .0673298 .5038655
nation>
region
var (_cons) .0382645 .0087757 .0244105 .0599811
LR test vs. Poisson regression: chi2(2) = 1272.15 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model
for the log of the standardized mortality ratio, the ratio of observed deaths to expected deaths that is
based on a reference population, the reference population being all nine nations.
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Looking at the estimated variance components, we can see that there is more unobserved variability
between nations than between regions within each nation. This may be due to, for example, country-
specific informational campaigns on the risks of sun exposure.

4

Stored results

mepoisson stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e(b)
e(k_eq-model) number of equations in overall model test
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) X2
e(p) significance
e(1l_c) log likelihood, comparison model
e(chi2_c) x2, comparison model
e(df_c) degrees of freedom, comparison model
e(p_c) significance, comparison model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise

Macros
e(cmd) mepoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(ivars) grouping variables
e(model) poisson
e(title) title in estimation output
e(link) log
e(family) poisson
e(clustvar) name of cluster variable
e(offset) offset
e (exposure) exposure variable
e(intmethod) integration method
e(n_quad) number of integration points
e(chi2type) Wald; type of model x?
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) bV
e(estat_cmd) program used to implement estat

e(predict) program used to implement predict
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g—_min) group-size minimums
e(g_avg) group-size averages
e(g_max) group-size maximums
e(V) variance—covariance matrix of the estimator
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas

In a two-level Poisson model, for cluster j, 5 = 1,..., M, the conditional distribution of
¥j = (Yj1,---,Yjn,)’s given a set of cluster-level random effects u;, is
n;
Flyshuy) = ] Hexp (xi38 + 2ziju;) 1 exp {— exp (xi;8 + zi;1;)} /4]
i=1

exp | Y {yij (xi8+ zij0;) — exp (x;58+ zi5u;) — log(yi;!)}

i=1

Defining ¢ (y;) = Y., log(y;;!), where c(y;) does not depend on the model parameters, we
can express the above compactly in matrix notation,

flyilg) = exp {y} (X;8+ Z;u;) — 1" exp (X;8+ Zju;) — c(y;)}

where X; is formed by stacking the row vectors x;; and Z; is formed by stacking the row vectors
z;j. We extend the definition of exp(-) to be a vector function where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and g X g variance matrix
X, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density
f(yj.u;),

L;(3,%) = (2m)"1/? |2|71/2/f(yj'|uj)exp(—u}271uj/2) du;
— exp {—c(y;)} (2) "2 272 [[exp {h (8.2.u) du,

where
h (5, E, Llj) = y; (XJ,@ + Zjllj) — 1/ exp (Xjﬁ + Zjllj) — 1,1‘/7»27111]‘/2

and for convenience, in the arguments of h(-) we suppress the dependence on the observable data

The integration in (2) has no closed form and thus must be approximated. mepoisson offers
four approximation methods: mean—variance adaptive Gauss—Hermite quadrature (default unless a
crossed random-effects model is fit), mode-curvature adaptive Gauss—Hermite quadrature, nonadaptive
Gauss—Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).
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The Laplacian approximation is based on a second-order Taylor expansion of g (3, %, u;) about
the value of u; that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, £(3,X) = ZJM:1 L;(B,%).

2

Maximization of £(3,X) is performed with respect to (3, a%), where o2 is a vector comprising

the unique elements of ¥. Parameter estimates are stored in e(b) as (3, 3’2), with the corresponding
variance—covariance matrix stored in e (V).
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[ME] mepoisson postestimation — Postestimation tools for mepoisson

[ME] menbreg — Multilevel mixed-effects negative binomial regression

[ME] meqrpoisson — Multilevel mixed-effects Poisson regression (QR decomposition)
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[SEM] intro 5 — Tour of models (Multilevel mixed-effects models)

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[U] 20 Estimation and postestimation commands



Title

mepoisson postestimation — Postestimation tools for mepoisson

Description Syntax for predict Menu for predict

Options for predict Syntax for estat group Menu for estat

Remarks and examples Methods and formulas Also see
Description

The following postestimation command is of special interest after mepoisson:

Command

Description

estat group

summarize the composition of the nested groups

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce
estimates
lincom

Irtest
margins

marginsplot
nlcom

predict
predictnl

pwcompare
test
testnl

summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

cataloging estimation results

point estimates, standard errors, testing, and inference for linear
combinations of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.
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Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [zf] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [type] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description
Main
mu number of events; the default
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset or exposure variable in calculating predictions; relevant only
if you specified offset () or exposure() when you fit the model
fixedonly prediction for the fixed portion of the model only
Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict
Main

Is

remeans, remodes, reses(); see [ME] meglm postestimation.

mu, the default, calculates the predicted mean (the predicted number of events), that is, the inverse
link function applied to the linear prediction. By default, this is based on a linear predictor that
includes both the fixed effects and the random effects, and the predicted mean is conditional on
the values of the random effects. Use the fixedonly option if you want predictions that include
only the fixed portion of the model, that is, if you want random effects set to 0.

fitted, xb, stdp, pearson, deviance, anscombe, means, modes, nooffset, fixedonly; see
[ME] meglm postestimation.

By default or if the means option is specified, statistics mu, pr, fitted, xb, stdp, pearson,
deviance, and anscombe are based on the posterior mean estimates of random effects. If the
modes option is specified, these statistics are based on the posterior mode estimates of random
effects.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

Syntax for estat group

estat group

Menu for estat

Statistics > Postestimation > Reports and statistics

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
Poisson model with mepoisson. For the most part, calculation centers around obtaining estimates
of the subject/group-specific random effects. Random effects are not estimated when the model is fit
but instead need to be predicted after estimation.

Here we show a short example of predicted counts and predicted random effects; refer to [ME] meglm
postestimation for additional examples applicable to mixed-effects generalized linear models.

> Example 1

In example 2 of [ME] mepoisson, we modeled the number of deaths among males in nine European
nations as a function of exposure to ultraviolet radiation (uv). We used a three-level Poisson model
with random effects at the nation and region levels.
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. use http://www.stata-press.com/data/r13/melanoma
(Skin cancer (melanoma) data)

. mepoisson deaths c.uv##c.uv, exposure(expected) || nation: || region:
(output omitted )

We can use predict to obtain the predicted counts as well as the estimates of the random effects
at the nation and region levels.
. predict mu
(predictions based on fixed effects and posterior means of random effects)

(option mu assumed)
(using 7 quadrature points)

. predict re_nat re_reg, remeans
(calculating posterior means of random effects)
(using 7 quadrature points)

Stata displays a note that the predicted values of mu are based on the posterior means of random
effects. You can use option modes to obtain predictions based on the posterior modes of random
effects.

Here we list the data for the first nation in the dataset, which happens to be Belgium:

. list nation region deaths mu re_nat re_reg if nation==1, sepby(region)

nation region deaths mu re_nat re_reg
1. | Belgium 1 79  69.17982  -.123059 .3604518
2. | Belgium 2 80  78.14297  -.123059 .049466
3. | Belgium 2 51  46.21698 -.123059 .049466
4. | Belgium 2 43  54.25965  -.123059 .049466
5. | Belgium 2 89 66.78156  -.123059 .049466
6. | Belgium 2 19  34.83411  -.123059 .049466
7. | Belgium 3 19 8.166062 -.123059  -.4354829
8. | Belgium 3 15 40.92741  -.123059  -.4354829
9. | Belgium 3 33 30.78324  -.123059  -.4354829
10. | Belgium 3 9  6.914059 -.123059  -.4354829
11. | Belgium 3 12 12.16361  -.123059  -.4354829

We can see that the predicted random effects at the nation level, re_nat, are the same for all the
observations. Similarly, the predicted random effects at the region level, re_reg, are the same within
each region. The predicted counts, mu, are closer to the observed deaths than the predicted counts
from the negative binomial mixed-effects model in example 1 of [ME] menbreg postestimation.

N

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.

Also see
[ME] mepoisson — Multilevel mixed-effects Poisson regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

meprobit — Multilevel mixed-effects probit regression

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas References
Also see
Syntax
meprobit depvar fe_equation [ |l re_equation} [ || re_equation . .. ] [ , options]

where the syntax of fe_equation is
[indepvars] [zf] [zn] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
noconstant suppress constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
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options

Description

Model
binomial (varname | #)
constraints (constraints)
collinear

SE/Robust
vce (veetype)

Reporting

level (#)
nocnsreport
notable
noheader
nogroup
nolrtest
display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization

maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

set binomial trials if data are in binomial form
apply specified linear constraints
keep collinear variables

vcetype may be oim, robust, or cluster clustvar

set confidence level; default is 1level (95)

do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

do not perform likelihood-ratio test comparing with probit regression

control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

integration method

set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0O; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean-variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [U] 11.1.10 Prefix commands.

startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Multilevel mixed-effects models > Probit regression

Description

meprobit fits mixed-effects models for binary or binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with success probability determined
by the standard normal cumulative distribution function.

Options
_ (Wogel

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern (matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.
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covariance (fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, ) and (k,!) are constrained to be equal if matnameli, j| = matnamel[k,1].

binomial (varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial () is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level(#), nocnsreport, ; see [R] estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents meprobit from performing a likelihood-ratio test that compares the mixed-effects
probit model with standard (marginal) probit regression. This option may also be specified upon
replay to suppress this test from the output.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint), sformat (%fmt), and
nolstretch; see [R] estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss—Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive
Gauss—Hermite quadrature; and 1aplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
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defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. Those that require
special mention for meprobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meprobit but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)], noestimate, and dnumerical; see [ME]
meglm.

coeflegend; see [R] estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

meprobit is a convenience command for meglm with a probit link and a bernoulli or binomial
family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models

Introduction

Mixed-effects probit regression is probit regression containing both fixed effects and random effects.
In longitudinal data and panel data, random effects are useful for modeling intracluster correlation;
that is, observations in the same cluster are correlated because they share common cluster-level random
effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012). Guo and Zhao (2000) and Rabe-Hesketh and Skrondal (2012, chap. 10) are good
introductory readings on applied multilevel modeling of binary data.
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meprobit allows for not just one, but many levels of nested clusters of random effects. For
example, in a three-level model you can specify random effects for schools and then random effects
for classes nested within schools. In this model, the observations (presumably, the students) comprise
the first level, the classes comprise the second level, and the schools comprise the third.

However, for simplicity, we here consider the two-level model, where for a series of M independent
clusters, and conditional on a set of fixed effects x;; and a set of random effects u;,

Pr(y;; = 1]x;j,u;) = H(x;;8 + ziju;) (1)

for j = 1,..., M clusters, with cluster j consisting of ¢ = 1,...,n; observations. The responses are
the binary-valued y;;, and we follow the standard Stata convention of treating y;; = 1 if depvar;; #0
and treating y;; = 0 otherwise. The 1 X p row vector X;; are the covariates for the fixed effects,
analogous to the covariates you would find in a standard probit regression model, with regression
coefficients (fixed effects) 3. For notational convenience here and throughout this manual entry, we
suppress the dependence of y;; on X;;.

The 1 x g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean 0 and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;;, so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Finally, because this is probit regression, H(-) is the standard normal cumulative distribution
function, which maps the linear predictor to the probability of a success (y;; = 1) with H(v) = ®(v).

Model (1) may also be stated in terms of a latent linear response, where only y;; = I (yf] > 0)
is observed for the latent
il/;j =
The errors ¢€;; are distributed as a standard normal with mean O and variance 1 and are independent
of u]‘.

XijB + 2ziju; + €ij

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

meprobit supports three types of Gauss—Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details. The simplest random-effects model
you can fit using meprobit is the two-level model with a random intercept,

Pr(y;; = 1u;) = ®(x;58 + uy)

This model can also be fit using xtprobit with the re option; see [XT] xtprobit.
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Below we present two short examples of mixed-effects probit regression; refer to [ME] melogit
for additional examples including crossed random-effects models and to [ME] me and [ME] meglm
for examples of other random-effects models.

Two-level models

We begin with a simple application of (1) as a two-level model, because a one-level model, in our
terminology, is just standard probit regression; see [R] probit.

> Example 1

In example 1 of [ME] melogit, we analyzed a subsample of data from the 1989 Bangladesh
fertility survey (Huq and Cleland 1990), which polled 1,934 Bangladeshi women on their use of
contraception. The women sampled were from 60 districts, identified by the variable district. Each
district contained either urban or rural areas (variable urban) or both. The variable c_use is the binary
response, with a value of 1 indicating contraceptive use. Other covariates include mean-centered age
and three indicator variables recording number of children. Here we refit that model with meprobit:

. use http://www.stata-press.com/data/r13/bangladesh
(Bangladesh Fertility Survey, 1989)

. meprobit c_use urban age child* || district:
Fitting fixed-effects model:

Iteration O: log likelihood = -1228.8313
Iteration 1: log likelihood = -1228.2466
Iteration 2: log likelihood = -1228.2466

Refining starting values:

Grid node O: log likelihood = -1237.3973

Fitting full model:

Iteration 0: log likelihood = -1237.3973 (not concave)

Iteration 1 log likelihood = -1221.2111 (not concave)
Iteration 2: log likelihood = -1207.4451
Iteration 3: log likelihood = -1206.7002
Iteration 4: log likelihood = -1206.5346
Iteration 5 log likelihood = -1206.5336

Iteration 6: log likelihood = -1206.5336

Mixed-effects probit regression Number of obs = 1934

Group variable: district Number of groups = 60

Obs per group: min = 2

avg = 32.2

max = 118

Integration method: mvaghermite Integration points = 7

Wald chi2(5) = 115.36

Log likelihood = -1206.5336 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z]| [95% Conf. Intervall

urban .4490191 .0727176 6.17 0.000 .3064953 .5915429

age -.0162203 .0048005 -3.38 0.001 -.0256291  -.0068114

childl .674377 .0947829 7.11  0.000 .488606 .8601481

child2 .8281581 .1048136 7.90 0.000 .6227272 1.033589

child3 .8137876 .1073951 7.58 0.000 .6032972 1.024278

_cons -1.02799 .0870307 -11.81  0.000 -1.1985667  -.8574132
district

var (_cons) .0798719 .026886 .0412921 .1544972
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LR test vs. probit regression: chibar2(01) = 43.43 Prob>=chibar2 = 0.0000

Comparing the estimates of meprobit with those of melogit, we observe the familiar result
where the probit estimates are closer to 0 in absolute value due to the smaller variance of the error
term in the probit model. Example 1 of [ME] meprobit postestimation shows that the marginal effect
of covariates is nearly the same between the two models.

Unlike a logistic regression, coefficients from a probit regression cannot be interpreted in terms of
odds ratios. Most commonly, probit regression coefficients are interpreted in terms of partial effects,
as we demonstrate in example 1 of [ME] meprobit postestimation. For now, we only note that urban
women and women with more children are more likely to use contraceptives and that contraceptive
use decreases with age. The estimated variance of the random intercept at the district level, 3'2, is
0.08 with standard error 0.03. The reported likelihood-ratio test shows that there is enough variability
between districts to favor a mixed-effects probit regression over an ordinary probit regression; see
Distribution theory for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of
variance components.

N

Three-level models

Two-level models extend naturally to models with three or more levels with nested random effects.
Below we replicate example 2 of [ME] melogit with meprobit.

> Example 2

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the
cognitive ability of patients with schizophrenia compared with their relatives and control subjects.
Cognitive ability was measured as the successful completion of the “Tower of London”, a computerized
task, measured at three levels of difficulty. For all but one of the 226 subjects, there were three
measurements (one for each difficulty level). Because patients’ relatives were also tested, a family
identifier, family, was also recorded.

We fit a probit model with response dt1lm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families.
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. use http://www.stata-press.com/data/r13/towerlondon
(Tower of London data)

. meprobit dtlm difficulty i.group || family: || subject:
Fitting fixed-effects model:

Iteration O: log likelihood = -317.11238
Iteration 1: log likelihood = -314.50535
Iteration 2: log likelihood = -314.50121
Iteration 3: log likelihood = -314.50121

Refining starting values:

Grid node O: log likelihood = -326.18533

Fitting full model:

Iteration O: log likelihood = -326.18533 (not concave)

Iteration 1 log likelihood = -313.16256 (not concave)
Iteration 2: log likelihood = -308.47528
Iteration 3: log likelihood = -305.02228
Iteration 4: log likelihood = -304.88972
Iteration 5 log likelihood = -304.88845

Iteration 6: log likelihood = -304.88845

Mixed-effects probit regression Number of obs = 677
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration points = 7
Wald chi2(3) = 83.28
Log likelihood = -304.88845 Prob > chi2 = 0.0000
dtlm Coef.  Std. Err. z P>|z| [95% Conf. Intervall
difficulty -.9329891 .1037376 -8.99 0.000 -1.136311  -.7296672
group
2 -.1632243 .204265 -0.80 0.424 -.5635763 .2371276
3 -.6220196 .228063 -2.73 0.006 -1.069015  -.1750244
_cons -.8405154 .1597223 -5.26  0.000 -1.153665  -.5274654
family
var (_cons) .2120948 .1736281 .0426292 1.055244
family>
subject
var (_cons) .3559141 .219331 .106364 1.190956
LR test vs. probit regression: chi2(2) = 19.23 Prob > chi2 = 0.0001

Note: LR test is comnservative and provided only for reference.

Notes:

1. This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—meprobit
assumes that subject is nested within family.
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2. The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families. You can suppress this table
with the nogroup or the noheader option, which will suppress the rest of the header as well.

After adjusting for the random-effects structure, the probability of successful completion of the
Tower of London decreases dramatically as the level of difficulty increases. Also, schizophrenics
(group==3) tended not to perform as well as the control subjects.

4

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results

meprobit stores the following in e():

e(k_eq_model)
e(k_f)

Scalars
e() number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e(b)

number of equations in overall model test
number of fixed-effects parameters

e(k_r) number of random-effects parameters
e(k_rs) number of variances

e(k_rc) number of covariances

e(df_m) model degrees of freedom

e(11) log likelihood

e(N_clust) number of clusters

e(chi2) x?

e(p) significance

e(1ll_c) log likelihood, comparison model
e(chi2_c) x2, comparison model

e(df_c) degrees of freedom, comparison model
e(p-c) significance, comparison model
e(rank) rank of e(V)

e(ic) number of iterations

e(rc) return code

e(converged)

1 if converged, O otherwise
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Macros
e(cmd)
e(cmdline)
e(depvar)
e(covariates)
e(ivars)
e (model)
e(title)
e(link)
e(family)
e(clustvar)
e(offset)
e(binomial)
e(intmethod)
e(n_quad)
e(chi2type)
e(vce)
e(vcetype)
e(opt)
e(which)
e(ml_method)
e(user)
e(technique)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)
e(predict)

Matrices
e(b)
e(Cns)
e(ilog)
e(gradient)
e(N_g)
e(g_min)
e(g_avg)
e(g_max)
e(V)
e(V_modelbased)

Functions
e(sample)

Methods and formulas

meprobit

command as typed

name of dependent variable
list of covariates

grouping variables

probit

title in estimation output
probit

bernoulli or binomial
name of cluster variable
offset

binomial number of trials
integration method

number of integration points
Wald; type of model x>
veetype specified in vce ()
title used to label Std. Err.
type of optimization

max or min; whether optimizer is to perform maximization or minimization

type of m1 method

name of likelihood-evaluator program
maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat
program used to implement predict

coefficient vector

constraints matrix

iteration log (up to 20 iterations)

gradient vector

group counts

group-size minimums

group-size averages

group-size maximums

variance—covariance matrix of the estimator
model-based variance

marks estimation sample

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by meprobit (option binomial()), the methods presented below are in terms of the more
general binomial mixed-effects model.

For a two-level binomial model, consider the response y;; as the number of successes from a

series of 7;; Bernoulli trials (replications). For cluster j, j = 1,..., M, the conditional distribution
of y; = (Yj1,---,¥Yjm;) > given a set of cluster-level random effects uy, is
nj
Tij Yij Tij —Yij
f(yjl;) = H {( ”) {(I>(77ij)} ! {1 - q’(mj)} r
=1 L\Yij
n;
P
= exp Z [yij log {®(n;;) } — (rij — vij) log {®(—n;;) } + log ( Uﬂ

i=1

Yij

for i = Xij,@ + z;;u; + offsetij.



208 meprobit — Multilevel mixed-effects probit regression

: _ ) ) /
Defining r; = (rj1,...,7j,,)" and

nj
Tij
c(yjrj) = Zlog< j)
=1

Yij

where ¢(y;,r;) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yjlu;) = exp [yjlog {®(n;)} — (r; —y;) log {®(—n;)} + c(y,1;)]

where 7, is formed by stacking the row vectors n;;. We extend the definitions of ®(-), log(-), and
exp(-) to be vector functions where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and ¢ X ¢ variance matrix
X, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density
[y u)),

L£;(B,T) = (2m) "/ |2|_1/2/f(y3'|uj)exp (—uj=""u;/2) du,
= exp {c(y;,r;)} (2m) 79/ \E|_1/2/6XP {h(B,%,u;)} du,

where
h(B,2,u;) =y)log {®(n;)} — (r; —y;) log {®(—n;)} — uZ "u,/2
and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(¥, 15, X5, Zy).
The integration in (2) has no closed form and thus must be approximated. meprobit offers
four approximation methods: mean—variance adaptive Gauss—Hermite quadrature (default unless a

crossed random-effects model is fit), mode-curvature adaptive Gauss—Hermite quadrature, nonadaptive
Gauss—Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of h (3, X, u;) about
the value of u; that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual

M
clusters, namely, £(83,%) = >_;_, L;(8,%).

2

Maximization of £(3,%) is performed with respect to (3, o?), where o2 is a vector comprising

the unique elements of ¥. Parameter estimates are stored in e(b) as (3, 32), with the corresponding
variance—covariance matrix stored in e (V).
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[U] 20 Estimation and postestimation commands


http://www.stata-press.com/books/mlmus3.html

Title

meprobit postestimation — Postestimation tools for meprobit

Description
Options for predict
Option for estat icc

Syntax for predict Menu for predict
Syntax for estat Menu for estat
Remarks and examples Stored results

Methods and formulas Also see

Description

The following postestimation commands are of special interest after meprobit:

Command

Description

estat group
estat icc

summarize the composition of the nested groups
estimate intraclass correlations

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce
estimates
lincom

lrtest
margins

marginsplot
nlcom

predict
predictnl

pwcompare
test
testnl

summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

cataloging estimation results

point estimates, standard errors, testing, and inference for linear
combinations of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses
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Special-interest postestimation commands

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.

estat icc displays the intraclass correlation for pairs of latent linear responses at each nested
level of the model. Intraclass correlations are available for random-intercept models or for random-
coefficient models conditional on random-effects covariates being equal to 0. They are not available
for crossed-effects models.

Syntax for predict

Syntax for obtaining predictions of random effects and their standard errors

predict [type] newvarsspec [l_'f] [in], {remeans|remodes} [reses(newvarsspec)]

Syntax for obtaining other predictions

predict [type] newvarsspec [zf] [m] [, statistic ()pti()ns]

newvarsspec is stub* or newvarlist.

statistic Description
Main
mu predicted mean; the default
fitted fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.



212 meprobit postestimation — Postestimation tools for meprobit

options Description
Main
means compute statistic using empirical Bayes means; the default
modes compute statistic using empirical Bayes modes
nooffset ignore the offset variable in calculating predictions; relevant only
if you specified offset () when you fit the model
fixedonly prediction for the fixed portion of the model only
Integration
intpoints (#) use # quadrature points to compute empirical Bayes means
iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators
tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

remeans, remodes, reses(); see [ME] meglm postestimation.

mu, the default, calculates the predicted mean (the probability of a positive outcome), that is, the
inverse link function applied to the linear prediction. By default, this is based on a linear predictor
that includes both the fixed effects and the random effects, and the predicted mean is conditional on
the values of the random effects. Use the fixedonly option if you want predictions that include
only the fixed portion of the model, that is, if you want random effects set to 0.

fitted, xb, stdp, pearson, deviance, anscombe, means, modes, nooffset, fixedonly; see
[ME] meglm postestimation.

By default or if the means option is specified, statistics mu, fitted, xb, stdp, pearson, deviance,
and anscombe are based on the posterior mean estimates of random effects. If the modes option
is specified, these statistics are based on the posterior mode estimates of random effects.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.
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Syntax for estat

Summarize the composition of the nested groups

estat 5£oup

Estimate intraclass correlations

estat icc [, level(#)]

Menu for estat

Statistics > Postestimation > Reports and statistics

Option for estat icc

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
probit model using meprobit. Here we show a short example of predicted probabilities and predicted
random effects; refer to [ME] meglm postestimation for additional examples.

> Example 1

In example 2 of [ME] meprobit, we analyzed the cognitive ability (dtlm) of patients with
schizophrenia compared with their relatives and control subjects, by using a three-level probit model
with random effects at the family and subject levels. Cognitive ability was measured as the successful
completion of the “Tower of London”, a computerized task, measured at three levels of difficulty.

. use http://www.stata-press.com/data/r13/towerlondon

(Tower of London data)

. meprobit dtlm difficulty i.group || family: || subject:
(output omitted )

We obtain predicted probabilities based on the contribution of both fixed effects and random effects
by typing

. predict pr

(predictions based on fixed effects and posterior means of random effects)
(option mu assumed)

(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes op